Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1988 Nov;95(3):795–804. doi: 10.1111/j.1476-5381.1988.tb11707.x

Characteristics of cromakalim-induced relaxations in the smooth muscle cells of guinea-pig mesenteric artery and vein.

K Nakao 1, K Okabe 1, K Kitamura 1, H Kuriyama 1, A H Weston 1
PMCID: PMC1854238  PMID: 2974740

Abstract

1. The effects of cromakalim (BRL 34915) on the smooth muscle cells of guinea-pig mesenteric artery and vein were investigated with microelectrode and tension recording methods. 2. Cromakalim (greater than 10 microM) produced membrane hyperpolarization with an increase in ionic conductance. The hyperpolarization occurred to a greater extent and lasted longer in the vein than in the artery. 3. The hyperpolarization induced by cromakalim in mesenteric vein comprised two components, one of which was Mn sensitive. In mesenteric artery, the hyperpolarization was relatively insensitive to Mn. 4. From the current-voltage relationship measured from arterial smooth muscle membranes, the reversal potential of cromakalim was estimated to be -80 mV. The cromakalim-induced hyperpolarization was not modified in Na- or Cl-deficient solution. 5. In both mesenteric artery and vein, cromakalim relaxed tissues precontracted with high K with (below 40 mM) or without (above 40 mM) hyperpolarization of the membrane. 6. In the mesenteric artery, action potentials evoked by electrical stimulation ceased before the generation of hyperpolarization. 7. Cromakalim produced a cross-desensitization with nicorandil on the evoked membrane hyperpolarization in mesenteric artery. 8. It is concluded that the relaxing actions of cromakalim result from the hyperpolarization which follows the opening of Ca-dependent K channels. The inhibition of a voltage-dependent Ca current may also be involved in this inhibitory effect.

Full text

PDF
799

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe Y., Tomita T. Cable properties of smooth muscle. J Physiol. 1968 May;196(1):87–100. doi: 10.1113/jphysiol.1968.sp008496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen S. L., Boyle J. P., Cortijo J., Foster R. W., Morgan G. P., Small R. C. Electrical and mechanical effects of BRL34915 in guinea-pig isolated trachealis. Br J Pharmacol. 1986 Oct;89(2):395–405. doi: 10.1111/j.1476-5381.1986.tb10273.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allen S. L., Foster R. W., Morgan G. P., Small R. C. The relaxant action of nicorandil in guinea-pig isolated trachealis. Br J Pharmacol. 1986 Jan;87(1):117–127. doi: 10.1111/j.1476-5381.1986.tb10163.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ashwood V. A., Buckingham R. E., Cassidy F., Evans J. M., Faruk E. A., Hamilton T. C., Nash D. J., Stemp G., Willcocks K. Synthesis and antihypertensive activity of 4-(cyclic amido)-2H-1-benzopyrans. J Med Chem. 1986 Nov;29(11):2194–2201. doi: 10.1021/jm00161a011. [DOI] [PubMed] [Google Scholar]
  5. Benham C. D., Bolton T. B., Lang R. J., Takewaki T. The mechanism of action of Ba2+ and TEA on single Ca2+-activated K+ -channels in arterial and intestinal smooth muscle cell membranes. Pflugers Arch. 1985 Feb;403(2):120–127. doi: 10.1007/BF00584088. [DOI] [PubMed] [Google Scholar]
  6. Bolton T. B. The depolarizing action of acetylcholine or carbachol in intestinal smooth muscle. J Physiol. 1972 Feb;220(3):647–671. doi: 10.1113/jphysiol.1972.sp009728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coldwell M. C., Howlett D. R. Specificity of action of the novel antihypertensive agent, BRL 34915, as a potassium channel activator. Comparison with nicorandil. Biochem Pharmacol. 1987 Nov 1;36(21):3663–3669. doi: 10.1016/0006-2952(87)90017-7. [DOI] [PubMed] [Google Scholar]
  8. Furukawa K., Itoh T., Kajiwara M., Kitamura K., Suzuki H., Ito Y., Kuriyama H. Vasodilating actions of 2-nicotinamidoethyl nitrate on porcine and guinea-pig coronary arteries. J Pharmacol Exp Ther. 1981 Jul;218(1):248–259. [PubMed] [Google Scholar]
  9. Ginsborg B. L. Electrical changes in the membrane in junctional transmission. Biochim Biophys Acta. 1973 Nov 28;300(3):289–317. doi: 10.1016/0304-4157(73)90007-5. [DOI] [PubMed] [Google Scholar]
  10. Ginsborg B. L. Ion movements in junctional transmission. Pharmacol Rev. 1967 Sep;19(3):289–316. [PubMed] [Google Scholar]
  11. Hamilton T. C., Weir S. W., Weston A. H. Comparison of the effects of BRL 34915 and verapamil on electrical and mechanical activity in rat portal vein. Br J Pharmacol. 1986 May;88(1):103–111. doi: 10.1111/j.1476-5381.1986.tb09476.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hollingsworth M., Amédée T., Edwards D., Mironneau J., Savineau J. P., Small R. C., Weston A. H. The relaxant action of BRL 34915 in rat uterus. Br J Pharmacol. 1987 Aug;91(4):803–813. doi: 10.1111/j.1476-5381.1987.tb11279.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Inoue R., Kitamura K., Kuriyama H. Two Ca-dependent K-channels classified by the application of tetraethylammonium distribute to smooth muscle membranes of the rabbit portal vein. Pflugers Arch. 1985 Oct;405(3):173–179. doi: 10.1007/BF00582557. [DOI] [PubMed] [Google Scholar]
  14. Inoue R., Okabe K., Kitamura K., Kuriyama H. A newly identified Ca2+ dependent K+ channel in the smooth muscle membrane of single cells dispersed from the rabbit portal vein. Pflugers Arch. 1986 Feb;406(2):138–143. doi: 10.1007/BF00586674. [DOI] [PubMed] [Google Scholar]
  15. Inoue T., Ito Y., Takeda K. The effects of 2-nicotinamidoethyl nitrate on smooth muscle cells of the dog mesenteric artery and trachea. Br J Pharmacol. 1983 Nov;80(3):459–470. doi: 10.1111/j.1476-5381.1983.tb10716.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Itoh T., Furukawa K., Kajiwara M., Kitamura K., Suzuki H., Ito Y., Kuriyama H. Effects of 2-nicotinamidoethyl nitrate on smooth muscle cells and on adrenergic transmission in the guinea-pig and porcine mesenteric arteries. J Pharmacol Exp Ther. 1981 Jul;218(1):260–270. [PubMed] [Google Scholar]
  17. Karashima T., Itoh T., Kuriyama H. Effects of 2-nicotinamidoethyl nitrate on smooth muscle cells of the guinea-pig mesenteric and portal veins. J Pharmacol Exp Ther. 1982 May;221(2):472–480. [PubMed] [Google Scholar]
  18. Quast U. Effect of the K+ efflux stimulating vasodilator BRL 34915 on 86Rb+ efflux and spontaneous activity in guinea-pig portal vein. Br J Pharmacol. 1987 Jul;91(3):569–578. doi: 10.1111/j.1476-5381.1987.tb11250.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shetty S. S., Weiss G. B. Dissociation of actions of BRL 34915 in the rat portal vein. Eur J Pharmacol. 1987 Sep 23;141(3):485–488. doi: 10.1016/0014-2999(87)90570-x. [DOI] [PubMed] [Google Scholar]
  20. Takata Y., Kuriyama H. ATP-induced hyperpolarization of smooth muscle cells of the guinea-pig coronary artery. J Pharmacol Exp Ther. 1980 Mar;212(3):519–526. [PubMed] [Google Scholar]
  21. Weir S. W., Weston A. H. Effect of apamin on responses to BRL 34915, nicorandil and other relaxants in the guinea-pig taenia caeci. Br J Pharmacol. 1986 May;88(1):113–120. doi: 10.1111/j.1476-5381.1986.tb09477.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weir S. W., Weston A. H. The effects of BRL 34915 and nicorandil on electrical and mechanical activity and on 86Rb efflux in rat blood vessels. Br J Pharmacol. 1986 May;88(1):121–128. doi: 10.1111/j.1476-5381.1986.tb09478.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yamanaka K., Furukawa K., Kitamura K. The different mechanisms of action of nicorandil and adenosine triphosphate on potassium channels of circular smooth muscle of the guinea-pig small intestine. Naunyn Schmiedebergs Arch Pharmacol. 1985 Oct;331(1):96–103. doi: 10.1007/BF00498857. [DOI] [PubMed] [Google Scholar]
  24. Yamanaka K., Kitamura K., Kuriyama H. Effects of neurotensin on electrical and mechanical properties of smooth muscles in longitudinal and circular layers of the guinea-pig ileum. Pflugers Arch. 1987 Jan;408(1):10–17. doi: 10.1007/BF00581834. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES