Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1988 Dec;95(4):1220–1228. doi: 10.1111/j.1476-5381.1988.tb11759.x

Interactions between angiotensin II, sympathetic nerve-mediated pressor response and cyclo-oxygenase products in the pithed rat.

T L Grant 1, J C McGrath 1
PMCID: PMC1854277  PMID: 3146400

Abstract

1. The influence of angiotensin II (AII) on resting blood pressure and on sympathetic nerve-mediated pressor responses in the pithed rat was investigated either by inhibiting the renin-angiotensin system or by infusing AII. 2. Plasma AII levels in the pithed rat were approximately 20 fold higher than in normotensive rats. 3. Infusion of a subpressor dose of AII (50 ng kg-1 min-1) had no effect on sympathetic nerve mediated pressor responses but a pressor dose of AII, (200 ng kg-1 min-1) facilitated nerve-mediated pressor responses. 4. The angiotensin converting enzyme inhibitor, teprotide, and the AII-receptor antagonist, saralasin, lowered the diastolic blood pressure and attenuated sympathetic nerve-mediated pressor responses. There was no difference in the effects of teprotide at 1 mg kg-1 and 10 mg kg-1. Infusion of sodium nitroprusside at concentrations producing a fall in diastolic blood pressure of similar magnitude to that produced by teprotide and saralasin significantly attenuated nerve-mediated pressor responses. 5. After teprotide, AII 50 mg kg-1 min-1 increased diastolic blood pressure. The inhibitory effect of teprotide on nerve-mediated pressor responses was antagonized by this infusion of AII only if the rats were pretreated with the cyclo-oxygenase inhibitor, flurbiprofen. 6. It is concluded that AII is a major determinant of vascular tone in the pithed rat and that inhibition of the renin-angiotensin system attenuates sympathetic nerve-mediated pressor responses at least in part through the fall in blood pressure per se. The demonstration of this is complicated by an excessive release of vasodilator prostaglandins possibly due to the infused AII.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1220

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiken J. W., Vane J. R. Inhibition of converting enzyme of the renin-angiotensin system in kidneys and hindlegs of dogs. Circ Res. 1972 Mar;30(3):263–273. doi: 10.1161/01.res.30.3.263. [DOI] [PubMed] [Google Scholar]
  2. Aiken J. W., Vane J. R. Intrarenal prostaglandin release attenuates the renal vasoconstrictor activity of angiotensin. J Pharmacol Exp Ther. 1973 Mar;184(3):678–687. [PubMed] [Google Scholar]
  3. Blumberg A. L., Denny S. E., Marshall G. R., Needleman P. Blood vessel-hormone interactions: angiotensin, bradykinin, and prostaglandins. Am J Physiol. 1977 Mar;232(3):H305–H310. doi: 10.1152/ajpheart.1977.232.3.H305. [DOI] [PubMed] [Google Scholar]
  4. Clough D. P., Collis M. G., Conway J., Hatton R., Keddie J. R. Interaction of angiotensin-converting enzyme inhibitors with the function of the sympathetic nervous system. Am J Cardiol. 1982 Apr 21;49(6):1410–1414. doi: 10.1016/0002-9149(82)90352-6. [DOI] [PubMed] [Google Scholar]
  5. De Jonge A., Knape J. T., Van Meel J. C., Kalkman H. O., Wilffert B., Thoolen M. J., Van Brummelen P., Timmermans P. B., Van Zwieten P. A. Effect of captopril on sympathetic neurotransmission in pithed normotensive rats. Eur J Pharmacol. 1983 Mar 25;88(2-3):231–240. doi: 10.1016/0014-2999(83)90010-9. [DOI] [PubMed] [Google Scholar]
  6. Dorer F. E., Kahn J. R., Lentz K. E., Levine M., Skeggs L. T. Hydrolysis of bradykinin by angiotensin-converting enzyme. Circ Res. 1974 Jun;34(6):824–827. doi: 10.1161/01.res.34.6.824. [DOI] [PubMed] [Google Scholar]
  7. Engel S. L., Schaeffer T. R., Gold B. I., Rubin B. Inhibition of pressor effects of angiotensin I and augmentation of depressor effects of bradykinin by synthetic peptides. Proc Soc Exp Biol Med. 1972 May;140(1):240–244. doi: 10.3181/00379727-140-36433. [DOI] [PubMed] [Google Scholar]
  8. Erdös E. G. Angiotensin I converting enzyme. Circ Res. 1975 Feb;36(2):247–255. doi: 10.1161/01.res.36.2.247. [DOI] [PubMed] [Google Scholar]
  9. FERREIRA S. H. A BRADYKININ-POTENTIATING FACTOR (BPF) PRESENT IN THE VENOM OF BOTHROPS JARARCA. Br J Pharmacol Chemother. 1965 Feb;24:163–169. doi: 10.1111/j.1476-5381.1965.tb02091.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ferrario C. M., Gildenberg P. L., McCubbin J. W. Cardiovascular effects of angiotensin mediated by the central nervous system. Circ Res. 1972 Mar;30(3):257–262. doi: 10.1161/01.res.30.3.257. [DOI] [PubMed] [Google Scholar]
  11. Gillespie J. S., Maclaren A., Pollock D. A method of stimulating different segments of the autonomic outflow from the spinal column to various organs in the pithed cat and rat. Br J Pharmacol. 1970 Oct;40(2):257–267. doi: 10.1111/j.1476-5381.1970.tb09919.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grant T. L., McGrath J. C. Interactions between angiotensin II and alpha-adrenoceptor agonists mediating pressor responses in the pithed rat. Br J Pharmacol. 1988 Dec;95(4):1229–1240. doi: 10.1111/j.1476-5381.1988.tb11760.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hatton R., Clough D. P. Captopril interferes with neurogenic vasoconstriction in the pithed rat by angiotensin-dependent mechanisms. J Cardiovasc Pharmacol. 1982 Jan-Feb;4(1):116–123. doi: 10.1097/00005344-198201000-00019. [DOI] [PubMed] [Google Scholar]
  14. Johnson E. M., Jr, Marshall G. R., Needleman P. Modification of responses to sympathetic nerve stimulation by the renin-angiotensin system in rats. Br J Pharmacol. 1974 Aug;51(4):541–547. doi: 10.1111/j.1476-5381.1974.tb09672.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kaufman L. J., Vollmer R. R. Endogenous angiotensin II facilitates sympathetically mediated hemodynamic responses in pithed rats. J Pharmacol Exp Ther. 1985 Oct;235(1):128–134. [PubMed] [Google Scholar]
  16. Kawasaki H., Cline W. H., Jr, Su C. Enhanced angiotensin-mediated facilitation of adrenergic neurotransmission in spontaneously hypertensive rats. J Pharmacol Exp Ther. 1982 Apr;221(1):112–116. [PubMed] [Google Scholar]
  17. Needleman P., Marshall G. R., Johnson E. M., Jr Determinants and modification of adrenergic and vascular resistance in the kidney. Am J Physiol. 1974 Sep;227(3):665–669. doi: 10.1152/ajplegacy.1974.227.3.665. [DOI] [PubMed] [Google Scholar]
  18. Powell-Jackson F. D., Macgregor J. Radioimmunoassay of angiotensin II in the rat. J Endocrinol. 1976 Jan;68(1):175–176. doi: 10.1677/joe.0.0680175. [DOI] [PubMed] [Google Scholar]
  19. Reid I. A. Actions of angiotensin II on the brain: mechanisms and physiologic role. Am J Physiol. 1984 May;246(5 Pt 2):F533–F543. doi: 10.1152/ajprenal.1984.246.5.F533. [DOI] [PubMed] [Google Scholar]
  20. Starke K. Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol. 1977;77:1–124. doi: 10.1007/BFb0050157. [DOI] [PubMed] [Google Scholar]
  21. Westfall T. C. Local regulation of adrenergic neurotransmission. Physiol Rev. 1977 Oct;57(4):659–728. doi: 10.1152/physrev.1977.57.4.659. [DOI] [PubMed] [Google Scholar]
  22. Zimmerman B. G. Blockade of adrenergic potentiating effect of angiotensin by 1-Sar-8-Ala-angiotensin II. J Pharmacol Exp Ther. 1973 Jun;185(3):486–492. [PubMed] [Google Scholar]
  23. de Jonge A., Knape J. T., van Meel J. C., Kalkman H. O., Wilffert B., Thoolen M. J., Timmermanns P. B., van Zwieten P. A. Effect of converting enzyme inhibition and angiotensin receptor blockade on the vasoconstriction mediated by alpha 1-and alpha 2-adrenoceptor stimulation in pithed normotensive rats. Naunyn Schmiedebergs Arch Pharmacol. 1982 Dec;321(4):309–313. doi: 10.1007/BF00498519. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES