Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1988 Dec;95(4):1133–1140. doi: 10.1111/j.1476-5381.1988.tb11748.x

Complex interactions of agonists with alpha 1-adrenoceptors in intact cells.

F Sladeczek 1, B H Schmidt 1, R N Cory 1, C el Moatassim 1, R Alonso 1, K L Kirk 1, C J Kirk 1, B Rouot 1, J Bockaert 1
PMCID: PMC1854278  PMID: 2905909

Abstract

1. The apparent Ki values of (-)-noradrenaline (NA), (+)- and (-)-adrenaline (Ad), phenylephrine and the mono-fluorinated NAs (in position 2, 5 or 6) for alpha 1-adrenoceptors of intact BC3H1 cells labelled with [3H]-prazosin were greatly dependent on the incubation temperature. 2. The EC50 values of these compounds for stimulation of the inositol phosphate (IP) accumulation at 37 degrees C were intermediate between their apparent dissociation constants at 2 degrees C (Ki2 degrees) and at 37 degrees C (Ki37 degrees). 3. The fact that an irreversible blockade of 46% +/- 6% (n = 3) of the [3H]-prazosin binding sites by phenoxybenzamine reduced the maximal IP-formation induced by NA by 57% +/- 5% (n = 3) shows that there is a direct coupling between alpha 1-adrenoceptors and phospholipase C in BC3H1 cells. 4. The Ki37 degrees s of all agonists tested were in the same range (0.1 to 1 mM) and showed no simple correlation with their EC50 values. 5. The Ki2 degrees values for all the agonist correlated linearly with their EC50 values but were about 20-100 times lower than the respective EC50 values (except for the partial agonist methoxamine). In order to explain this difference, we propose that the apparent high affinity in the cold could be due to an [3H]-prazosin-induced alteration of the active site of the alpha 1-adrenoceptor, increasing its apparent affinity for catecholamines.

Full text

PDF
1137

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambler S. K., Brown R. D., Taylor P. The relationship between phosphatidylinositol metabolism and mobilization of intracellular calcium elicited by alpha1-adrenergic receptor stimulation in BC3H-1 muscle cells. Mol Pharmacol. 1984 Nov;26(3):405–413. [PubMed] [Google Scholar]
  2. Ambler S. K., Taylor P. Mobilization of intracellular calcium by alpha 1-adrenergic receptor activation in muscle cell monolayers. J Biol Chem. 1986 May 5;261(13):5866–5871. [PubMed] [Google Scholar]
  3. Ambler S. K., Thompson B., Solski P. A., Brown J. H., Taylor P. Receptor-mediated inositol phosphate formation in relation to calcium mobilization: a comparison of two cell lines. Mol Pharmacol. 1987 Sep;32(3):376–383. [PubMed] [Google Scholar]
  4. Berridge M. J., Downes C. P., Hanley M. R. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J. 1982 Sep 15;206(3):587–595. doi: 10.1042/bj2060587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berridge M. J., Fain J. N. Inhibition of phosphatidylinositol synthesis and the inactivation of calcium entry after prolonged exposure of the blowfly salivary gland to 5-hydroxytryptamine. Biochem J. 1979 Jan 15;178(1):59–69. doi: 10.1042/bj1780059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berridge M. J. Phosphatidylinositol hydrolysis: a multifunctional transducing mechanism. Mol Cell Endocrinol. 1981 Nov;24(2):115–140. doi: 10.1016/0303-7207(81)90055-1. [DOI] [PubMed] [Google Scholar]
  7. Bone E. A., Fretten P., Palmer S., Kirk C. J., Michell R. H. Rapid accumulation of inositol phosphates in isolated rat superior cervical sympathetic ganglia exposed to V1-vasopressin and muscarinic cholinergic stimuli. Biochem J. 1984 Aug 1;221(3):803–811. doi: 10.1042/bj2210803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cantacuzene D., Kirk K. L., McCulloh D. H., Creveling C. R. Effect of fluorine substitution on the agonist specificity of norepinephrine. Science. 1979 Jun 15;204(4398):1217–1219. doi: 10.1126/science.221978. [DOI] [PubMed] [Google Scholar]
  9. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  10. Cory R. N., Rouot B., Guillon G., Sladeczek F., Balestre M. N., Bockaert J. The 5-hydroxytryptamine (5-HT2) receptor stimulates inositol phosphate formation in intact and broken WRK1 cells: determination of occupancy-response relationships for 5-HT agonists. J Pharmacol Exp Ther. 1987 Apr;241(1):258–267. [PubMed] [Google Scholar]
  11. Dixon R. A., Kobilka B. K., Strader D. J., Benovic J. L., Dohlman H. G., Frielle T., Bolanowski M. A., Bennett C. D., Rands E., Diehl R. E. Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature. 1986 May 1;321(6065):75–79. doi: 10.1038/321075a0. [DOI] [PubMed] [Google Scholar]
  12. Egawa K., Sacktor B., Takenawa T. Ca2+-dependent and Ca2+-independent degradation of phosphatidylinositol in rabbit vas deferens. Biochem J. 1981 Jan 15;194(1):129–136. doi: 10.1042/bj1940129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Geynet P., Ferry N., Borsodi A., Hanoune J. Two distinct alpha1-adrenergic receptor sites in rat liver: differential binding of (--)-[3H]dihydroergocryptine. Effects of guanine nucleotides and proteolysis; implications for a two-site model of alpha-receptor regulation. Biochem Pharmacol. 1981 Jun 15;30(12):1665–1675. doi: 10.1016/0006-2952(81)90395-6. [DOI] [PubMed] [Google Scholar]
  14. Goodhardt M., Ferry N., Geynet P., Hanoune J. Hepatic alpha 1-adrenergic receptors show agonist-specific regulation by guanine nucleotides. Loss of nucleotide effect after adrenalectomy. J Biol Chem. 1982 Oct 10;257(19):11577–11583. [PubMed] [Google Scholar]
  15. Hoyer D. Characterization of IBE 2254 binding to alpha 1-adrenergic receptors on intact DDT1 smooth muscle cells: comparison with membrane binding and correlation with phosphoinositides breakdown. J Recept Res. 1984;4(1-6):51–67. doi: 10.3109/10799898409042539. [DOI] [PubMed] [Google Scholar]
  16. Kobilka B. K., Matsui H., Kobilka T. S., Yang-Feng T. L., Francke U., Caron M. G., Lefkowitz R. J., Regan J. W. Cloning, sequencing, and expression of the gene coding for the human platelet alpha 2-adrenergic receptor. Science. 1987 Oct 30;238(4827):650–656. doi: 10.1126/science.2823383. [DOI] [PubMed] [Google Scholar]
  17. Koréh K., Monaco M. E. The relationship of hormone-sensitive and hormone-insensitive phosphatidylinositol to phosphatidylinositol 4,5-bisphosphate in the WRK-1 cell. J Biol Chem. 1986 Jan 5;261(1):88–91. [PubMed] [Google Scholar]
  18. Kubo T., Fukuda K., Mikami A., Maeda A., Takahashi H., Mishina M., Haga T., Haga K., Ichiyama A., Kangawa K. Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature. 1986 Oct 2;323(6087):411–416. doi: 10.1038/323411a0. [DOI] [PubMed] [Google Scholar]
  19. Lynch C. J., Charest R., Blackmore P. F., Exton J. H. Studies on the hepatic alpha 1-adrenergic receptor. Modulation of guanine nucleotide effects by calcium, temperature, and age. J Biol Chem. 1985 Feb 10;260(3):1593–1600. [PubMed] [Google Scholar]
  20. Lynch C. J., Taylor S. J., Smith J. A., Exton J. H. Formation of the high-affinity agonist state of the alpha 1-adrenergic receptor at cold temperatures does not require a G-protein. FEBS Lett. 1988 Feb 29;229(1):54–58. doi: 10.1016/0014-5793(88)80796-8. [DOI] [PubMed] [Google Scholar]
  21. Masu Y., Nakayama K., Tamaki H., Harada Y., Kuno M., Nakanishi S. cDNA cloning of bovine substance-K receptor through oocyte expression system. 1987 Oct 29-Nov 4Nature. 329(6142):836–838. doi: 10.1038/329836a0. [DOI] [PubMed] [Google Scholar]
  22. Mauger J. P., Poggioli J., Guesdon F., Claret M. Noradrenaline, vasopressin and angiotensin increase Ca2+ influx by opening a common pool of Ca2+ channels in isolated rat liver cells. Biochem J. 1984 Jul 1;221(1):121–127. doi: 10.1042/bj2210121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mauger J. P., Sladeczek F., Bockaert J. Characteristics and metabolism of alpha 1 adrenergic receptors in a nonfusing muscle cell line. J Biol Chem. 1982 Jan 25;257(2):875–879. [PubMed] [Google Scholar]
  24. Monaco M. E. Inositol metabolism in WRK-1 cells. Relationship of hormone-sensitive to -insensitive pools of phosphoinositides. J Biol Chem. 1987 Sep 25;262(27):13001–13006. [PubMed] [Google Scholar]
  25. Noda M., Takahashi H., Tanabe T., Toyosato M., Furutani Y., Hirose T., Asai M., Inayama S., Miyata T., Numa S. Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature. 1982 Oct 28;299(5886):793–797. doi: 10.1038/299793a0. [DOI] [PubMed] [Google Scholar]
  26. Schwarz K. R., Lanier S. M., Carter E. A., Graham R. M., Homcy C. J. Transient high-affinity binding of agonists to alpha 1-adrenergic receptors of intact liver cells. FEBS Lett. 1985 Aug 5;187(2):205–210. doi: 10.1016/0014-5793(85)81243-6. [DOI] [PubMed] [Google Scholar]
  27. Sherman W. R., Leavitt A. L., Honchar M. P., Hallcher L. M., Phillips B. E. Evidence that lithium alters phosphoinositide metabolism: chronic administration elevates primarily D-myo-inositol-1-phosphate in cerebral cortex of the rat. J Neurochem. 1981 Jun;36(6):1947–1951. doi: 10.1111/j.1471-4159.1981.tb10819.x. [DOI] [PubMed] [Google Scholar]
  28. Sladeczek F., Bockaert J., Mauger J. P. Differences between agonist and antagonist binding to alpha 1-adrenergic receptors of intact and broken-cell preparations. Mol Pharmacol. 1983 Nov;24(3):392–397. [PubMed] [Google Scholar]
  29. Sladeczek F., Schmidt B. H., Alonso R., Vian L., Tep A., Yasumoto T., Cory R. N., Bockaert J. New insights into maitotoxin action. Eur J Biochem. 1988 Jul 1;174(4):663–670. doi: 10.1111/j.1432-1033.1988.tb14149.x. [DOI] [PubMed] [Google Scholar]
  30. Ullrich A., Coussens L., Hayflick J. S., Dull T. J., Gray A., Tam A. W., Lee J., Yarden Y., Libermann T. A., Schlessinger J. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. 1984 May 31-Jun 6Nature. 309(5967):418–425. doi: 10.1038/309418a0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES