Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1989 Jun;97(2):542–546. doi: 10.1111/j.1476-5381.1989.tb11983.x

Mechanism of xanthine-induced relaxation of guinea-pig isolated trachealis muscle.

K Ogawa 1, K Takagi 1, T Satake 1
PMCID: PMC1854524  PMID: 2547475

Abstract

1. Four 3-alkylxanthines (3-methylxanthine, 3-n-propylxanthine (enprofylline), 3-n-butylxanthine and 3-iso-butylxanthine) and four 1-methyl-3-alkylxanthines (1-methyl-3-methylxanthine (theophylline), 1-methyl-3-n-propylxanthine, 1-methyl-3-n-butylxanthine and 1-methyl-3-iso-butylxanthine (IBMX], were compared in terms of cyclic AMP phosphodiesterase (PDE) inhibition and trachealis muscle relaxation. The relationship between xanthine structure and cyclic AMP PDE inhibition was also studied. 2. Xanthine induced relaxation of guinea-pig isolated trachealis muscle was measured against spontaneous tone. 3. The four 1-methyl-3-alkylxanthines were each significantly more potent than the corresponding 3-alkylxanthines in relaxing the isolated trachealis muscle. The 1-methyl-3-alkylxanthines were similarly more potent than the corresponding 3-alkyl derivatives in inhibiting low Km cyclic AMP PDE. There was a strong positive correlation between low Km cyclic AMP PDE inhibition and the tracheal smooth muscle relaxation evoked by the xanthine derivatives. 4. Since methylation of the 1-position of each 3-alkylxanthine increased the potency of the derivative in inhibiting low Km cyclic AMP PDE and in relaxing trachealis muscle and since a strong positive correlation was observed between the relaxant EC50 and the Ki value of each xanthine derivative, it is suggested that low Km cyclic AMP PDE inhibition by xanthines plays an important role in their tracheal relaxant effect.

Full text

PDF
542

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baba K., Kawanishi M., Satake T., Tomita T. Effects of verapamil on the contractions of guinea-pig tracheal muscle induced by Ca, Sr and Ba. Br J Pharmacol. 1985 Jan;84(1):203–211. doi: 10.1111/j.1476-5381.1985.tb17371.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bergstrand H. Phosphodiesterase inhibition and theophylline. Eur J Respir Dis Suppl. 1980;109:37–44. [PubMed] [Google Scholar]
  3. Bryson S. E., Rodger I. W. Effects of phosphodiesterase inhibitors on normal and chemically-skinned isolated airway smooth muscle. Br J Pharmacol. 1987 Nov;92(3):673–681. doi: 10.1111/j.1476-5381.1987.tb11371.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FERGUSON J. K., MCCOLL J. D., PARKER J. M. A comparison of the bronchodilator activity of some 1- and 7-substituted xanthines in the guinea pig. J Pharmacol Exp Ther. 1956 Nov;118(3):359–364. [PubMed] [Google Scholar]
  6. Fredholm B. B., Persson C. G. Xanthine derivatives as adenosine receptor antagonists. Eur J Pharmacol. 1982 Jul 30;81(4):673–676. doi: 10.1016/0014-2999(82)90359-4. [DOI] [PubMed] [Google Scholar]
  7. Honda K., Satake T., Takagi K., Tomita T. Effects of relaxants on electrical and mechanical activities in the guinea-pig tracheal muscle. Br J Pharmacol. 1986 Apr;87(4):665–671. doi: 10.1111/j.1476-5381.1986.tb14583.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Horrobin D. F., Manku M. S., Franks D. J., Hamet P. Methyl xanthine phosphodiesterase inhibitors behave as prostaglandin antagonists in a perfused rat mesenteric artery preparation. Prostaglandins. 1977 Jan;13(1):33–40. doi: 10.1016/0090-6980(77)90040-5. [DOI] [PubMed] [Google Scholar]
  9. Katsuki S., Murad F. Regulation of adenosine cyclic 3',5'-monophosphate and guanosine cyclic 3',5'-monophosphate levels and contractility in bovine tracheal smooth muscle. Mol Pharmacol. 1977 Mar;13(2):330–341. [PubMed] [Google Scholar]
  10. Lunell E., Svedmyr N., Andersson K. E., Persson C. G. Effects of enprofylline, a xanthine lacking adenosine receptor antagonism, in patients with chronic obstructive lung disease. Eur J Clin Pharmacol. 1982;22(5):395–402. doi: 10.1007/BF00542541. [DOI] [PubMed] [Google Scholar]
  11. Newman D. J., Colella D. F., Spainhour C. B., Jr, Brann E. G., Zabko-Potapovich B., Wardell J. R., Jr cAMP-phosphodiesterase inhibitors and tracheal smooth muscle relaxation. Biochem Pharmacol. 1978 Mar 1;27(5):729–732. doi: 10.1016/0006-2952(78)90511-7. [DOI] [PubMed] [Google Scholar]
  12. Peach M. J. Stimulation of release of adrenal catecholamine by adenosine 3':5'-cyclic monophosphate and theophylline in the absence of extracellular Ca 2+ . Proc Natl Acad Sci U S A. 1972 Apr;69(4):834–836. doi: 10.1073/pnas.69.4.834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Persson C. G., Gustafsson B. Tracheal relaxation from combinations of xanthines and of a beta 2-receptor agonist and xanthines. Lung. 1986;164(1):33–40. doi: 10.1007/BF02713627. [DOI] [PubMed] [Google Scholar]
  14. Persson C. G., Karlsson J. A., Erjefält I. Differentiation between bronchodilation and universal adenosine antagonism among xanthine derivatives. Life Sci. 1982 Jun 21;30(25):2181–2189. doi: 10.1016/0024-3205(82)90292-2. [DOI] [PubMed] [Google Scholar]
  15. Persson C. G. The profile of action of enprofylline, or why adenosine antagonism seems less desirable with xanthine antiasthmatics. Agents Actions Suppl. 1983;13:115–129. [PubMed] [Google Scholar]
  16. Polson J. B., Krzanowski J. J., Goldman A. L., Szentivanyi A. Inhibition of human pulmonary phosphodiesterase activity by therapeutic levels of theophylline. Clin Exp Pharmacol Physiol. 1978 Sep-Oct;5(5):535–539. doi: 10.1111/j.1440-1681.1978.tb00707.x. [DOI] [PubMed] [Google Scholar]
  17. Ruffin R. E., Newhouse M. T. Dipyridamole - is it a bronchodilator? Eur J Respir Dis. 1981;62(2):123–126. [PubMed] [Google Scholar]
  18. Takagi K., Hasegawa T., Kuzuya T., Ogawa K., Watanabe T., Satake T., Miyamoto K., Wakusawa S., Koshiura R. Structure-activity relationship in N3-alkyl-xanthine derivatives. Jpn J Pharmacol. 1988 Apr;46(4):373–378. doi: 10.1254/jjp.46.373. [DOI] [PubMed] [Google Scholar]
  19. Thompson W. J., Appleman M. M. Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry. 1971 Jan 19;10(2):311–316. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES