Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1989 Aug;97(4):1182–1190. doi: 10.1111/j.1476-5381.1989.tb12577.x

Characterization of adenosine receptors in guinea-pig isolated left atria.

U Jahnel 1, H Nawrath 1
PMCID: PMC1854603  PMID: 2790380

Abstract

1. The effects of purinergic stimulation on action potential, force of contraction, 86Rb efflux and 45Ca uptake were investigated in guinea-pig left atria. 2. Adenosine exerted a negative inotropic effect which was antagonized by adenosine deaminase but enhanced by dipyridamole. 3. The negative inotropic effect of adenosine was mimicked by 5'-(N-ethyl)-carboxamido-adenosine (NECA) and the isomers of N6-(phenyl-isopropyl)-adenosine, R-PIA and S-PIA. NECA and R-PIA were about 100 times more potent than adenosine, whereas R-PIA was about 100 times more potent than S-PIA. 4. The inotropic effects of adenosine (in the presence of dipyridamole), NECA, R-PIA and S-PIA were competitively antagonized either by theophylline (pA2 about 4.5) or 8-phenyltheophylline (pA2 about 6.3). 5. NECA and R-PIA shortened the action potential duration and increased the rate constant of the efflux of 86Rb in a concentration-dependent manner with no differences in potency; the effects were competitively antagonized by 8-phenyltheophylline. 6. Barium ions reduced the efflux of 86Rb under control conditions and antagonized the increase induced by NECA and R-PIA. 7. NECA and R-PIA significantly reduced 45Ca uptake in beating preparations. 8. It is concluded that adenosine, NECA and R-PIA activate a common receptor population (P1 or A3) on the outside of the cell membrane of atrial heart muscle to increase the potassium conductance and to reduce the action potential and, thereby, calcium influx and force of contraction.

Full text

PDF
1190

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARUNLAKSHANA O., SCHILD H. O. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother. 1959 Mar;14(1):48–58. doi: 10.1111/j.1476-5381.1959.tb00928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anand-Srivastava M. B., Cantin M. Regulation of adenylate cyclase in cultured cardiocytes from neonatal rats by adenosine and other agonists. Arch Biochem Biophys. 1983 Jun;223(2):468–476. doi: 10.1016/0003-9861(83)90611-2. [DOI] [PubMed] [Google Scholar]
  3. Armstrong C. M., Swenson R. P., Jr, Taylor S. R. Block of squid axon K channels by internally and externally applied barium ions. J Gen Physiol. 1982 Nov;80(5):663–682. doi: 10.1085/jgp.80.5.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Armstrong C. M., Taylor S. R. Interaction of barium ions with potassium channels in squid giant axons. Biophys J. 1980 Jun;30(3):473–488. doi: 10.1016/S0006-3495(80)85108-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Belardinelli L., Isenberg G. Isolated atrial myocytes: adenosine and acetylcholine increase potassium conductance. Am J Physiol. 1983 May;244(5):H734–H737. doi: 10.1152/ajpheart.1983.244.5.H734. [DOI] [PubMed] [Google Scholar]
  6. Brückner R., Fenner A., Meyer W., Nobis T. M., Schmitz W., Scholz H. Cardiac effects of adenosine and adenosine analogs in guinea-pig atrial and ventricular preparations: evidence against a role of cyclic AMP and cyclic GMP. J Pharmacol Exp Ther. 1985 Sep;234(3):766–774. [PubMed] [Google Scholar]
  7. Burnstock G., Meghji P. Distribution of P1- and P2-purinoceptors in the guinea-pig and frog heart. Br J Pharmacol. 1981 Aug;73(4):879–885. doi: 10.1111/j.1476-5381.1981.tb08741.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burnstock G. Purinergic nerves. Pharmacol Rev. 1972 Sep;24(3):509–581. [PubMed] [Google Scholar]
  9. Burnstock G. The changing face of autonomic neurotransmission. Acta Physiol Scand. 1986 Jan;126(1):67–91. doi: 10.1111/j.1748-1716.1986.tb07790.x. [DOI] [PubMed] [Google Scholar]
  10. Böhm M., Brückner R., Neumann J., Nose M., Schmitz W., Scholz H. Adenosine inhibits the positive inotropic effect of 3-isobutyl-1-methylxanthine in papillary muscles without effect on cyclic AMP or cyclic GMP. Br J Pharmacol. 1988 Apr;93(4):729–738. doi: 10.1111/j.1476-5381.1988.tb11456.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clay J. R., Shlesinger M. F. Effects of external cesium and rubidium on outward potassium currents in squid axons. Biophys J. 1983 Apr;42(1):43–53. doi: 10.1016/S0006-3495(83)84367-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cohen I. S., Falk R. T., Mulrine N. K. Actions of barium and rubidium on membrane currents in canine Purkinje fibres. J Physiol. 1983 May;338:589–612. doi: 10.1113/jphysiol.1983.sp014691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Collis M. G. Evidence for an A1-adenosine receptor in the guinea-pig atrium. Br J Pharmacol. 1983 Jan;78(1):207–212. doi: 10.1111/j.1476-5381.1983.tb09381.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Collis M. G., Jacobson K. A., Tomkins D. M. Apparent affinity of some 8-phenyl-substituted xanthines at adenosine receptors in guinea-pig aorta and atria. Br J Pharmacol. 1987 Sep;92(1):69–75. doi: 10.1111/j.1476-5381.1987.tb11297.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Collis M. G., Palmer D. B., Saville V. L. Comparison of the potency of 8-phenyltheophylline as an antagonist at A1 and A2 adenosine receptors in atria and aorta from the guinea-pig. J Pharm Pharmacol. 1985 Apr;37(4):278–280. doi: 10.1111/j.2042-7158.1985.tb05063.x. [DOI] [PubMed] [Google Scholar]
  16. DEGUBAREFF T., SLEATOR W., Jr EFFECTS OF CAFFEINE ON MAMMALIAN ATRIAL MUSCLE, AND ITS INTERACTION WITH ADENOSINE AND CALCIUM. J Pharmacol Exp Ther. 1965 May;148:202–214. [PubMed] [Google Scholar]
  17. Daly J. W. Adenosine receptors: targets for future drugs. J Med Chem. 1982 Mar;25(3):197–207. doi: 10.1021/jm00345a001. [DOI] [PubMed] [Google Scholar]
  18. Daly J. W., Hong O., Padgett W. L., Shamim M. T., Jacobson K. A., Ukena D. Non-xanthine heterocycles: activity as antagonists of A1- and A2-adenosine receptors. Biochem Pharmacol. 1988 Feb 15;37(4):655–664. doi: 10.1016/0006-2952(88)90139-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. GROSSMAN A., FURCHGOTT R. F. THE EFFECTS OF VARIOUS DRUGS ON CALCIUM EXCHANGE IN THE ISOLATED GUINEA-PIG LEFT AURICLE. J Pharmacol Exp Ther. 1964 Aug;145:162–172. [PubMed] [Google Scholar]
  20. Griffith S. G., Meghji P., Moody C. J., Burnstock G. 8-phenyltheophylline: a potent P1-purinoceptor antagonist. Eur J Pharmacol. 1981 Oct 15;75(1):61–64. doi: 10.1016/0014-2999(81)90346-0. [DOI] [PubMed] [Google Scholar]
  21. Guthrie J. R., Nayler W. G. Interaction between caffeine and adenosine on calcium exchangeability in mammalian atria. Arch Int Pharmacodyn Ther. 1967 Nov;170(1):249–255. [PubMed] [Google Scholar]
  22. HOLLANDER P. B., WEBB J. L. Effects of adenine nucleotides on the contractility and membrane potentials of rat atrium. Circ Res. 1957 Jul;5(4):349–353. doi: 10.1161/01.res.5.4.349. [DOI] [PubMed] [Google Scholar]
  23. Hartzell H. C. Adenosine receptors in frog sinus venosus: slow inhibitory potentials produced by adenine compounds and acetylcholine. J Physiol. 1979 Aug;293:23–49. doi: 10.1113/jphysiol.1979.sp012877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Henquin J. C., Meissner H. P., Preissler M. 9-Aminoacridine- and tetraethylammonium-induced reduction of the potassium permeability in pancreatic B-cells. Effects on insulin release and electrical properties. Biochim Biophys Acta. 1979 Nov 1;587(4):579–592. doi: 10.1016/0304-4165(79)90010-2. [DOI] [PubMed] [Google Scholar]
  25. Hille B. Potassium channels in myelinated nerve. Selective permeability to small cations. J Gen Physiol. 1973 Jun;61(6):669–686. doi: 10.1085/jgp.61.6.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hopkins S. V. The potentiation of the action of adenosine on the guinea-pig heart. Biochem Pharmacol. 1973 Feb 1;22(3):341–348. doi: 10.1016/0006-2952(73)90415-2. [DOI] [PubMed] [Google Scholar]
  27. Huang M., Drummond G. I. Effect of adenosine on cyclic AMP accumulation in ventricular myocardium. Biochem Pharmacol. 1976 Dec 15;25(24):2713–2719. doi: 10.1016/0006-2952(76)90262-8. [DOI] [PubMed] [Google Scholar]
  28. Hutter O. F., Rankin A. C. Ionic basis of the hyperpolarizing action of adenyl compounds on sinus venosus of the tortoise heart. J Physiol. 1984 Aug;353:111–125. doi: 10.1113/jphysiol.1984.sp015326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hüttemann E., Ukena D., Lenschow V., Schwabe U. Ra adenosine receptors in human platelets. Characterization by 5'-N-ethylcarboxamido[3H]adenosine binding in relation to adenylate cyclase activity. Naunyn Schmiedebergs Arch Pharmacol. 1984 Mar;325(3):226–233. doi: 10.1007/BF00495948. [DOI] [PubMed] [Google Scholar]
  30. JOHNSON E. A., MCKINNON M. G. Effect of acetylcholine and adenosine on cardiac cellular potentials. Nature. 1956 Nov 24;178(4543):1174–1175. doi: 10.1038/1781174a0. [DOI] [PubMed] [Google Scholar]
  31. Jochem G., Nawrath H. Adenosine activates a potassium conductance in guinea-pig atrial heart muscle. Experientia. 1983 Dec 15;39(12):1347–1349. doi: 10.1007/BF01990096. [DOI] [PubMed] [Google Scholar]
  32. Kurachi Y., Nakajima T., Sugimoto T. On the mechanism of activation of muscarinic K+ channels by adenosine in isolated atrial cells: involvement of GTP-binding proteins. Pflugers Arch. 1986 Sep;407(3):264–274. doi: 10.1007/BF00585301. [DOI] [PubMed] [Google Scholar]
  33. Leijten P. A., van Breemen C. The effects of caffeine on the noradrenaline-sensitive calcium store in rabbit aorta. J Physiol. 1984 Dec;357:327–339. doi: 10.1113/jphysiol.1984.sp015502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lohse M. J., Klotz K. N., Lindenborn-Fotinos J., Reddington M., Schwabe U., Olsson R. A. 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX)--a selective high affinity antagonist radioligand for A1 adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol. 1987 Aug;336(2):204–210. doi: 10.1007/BF00165806. [DOI] [PubMed] [Google Scholar]
  35. Londos C., Cooper D. M., Schlegel W., Rodbell M. Adenosine analogs inhibit adipocyte adenylate cyclase by a GTP-dependent process: basis for actions of adenosine and methylxanthines on cyclic AMP production and lipolysis. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5362–5366. doi: 10.1073/pnas.75.11.5362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Londos C., Cooper D. M., Wolff J. Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A. 1980 May;77(5):2551–2554. doi: 10.1073/pnas.77.5.2551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Londos C., Wolff J. Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5482–5486. doi: 10.1073/pnas.74.12.5482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Martens D., Lohse M. J., Rauch B., Schwabe U. Pharmacological characterization of A1 adenosine receptors in isolated rat ventricular myocytes. Naunyn Schmiedebergs Arch Pharmacol. 1987 Sep;336(3):342–348. doi: 10.1007/BF00172688. [DOI] [PubMed] [Google Scholar]
  39. Meinertz T., Nawrath H., Scholz H. Dibutyryl cyclic AMP and adrenaline increase contractile force and 45 Ca uptake in mammalian cardiac muscle. Naunyn Schmiedebergs Arch Pharmacol. 1973;277(1):107–112. doi: 10.1007/BF00498789. [DOI] [PubMed] [Google Scholar]
  40. Osterrieder W., Yang Q. F., Trautwein W. Effects of barium on the membrane currents in the rabbit S-A node. Pflugers Arch. 1982 Jul;394(1):78–84. doi: 10.1007/BF01108311. [DOI] [PubMed] [Google Scholar]
  41. Plant T. D. The effects of rubidium ions on components of the potassium conductance in the frog node of Ranvier. J Physiol. 1986 Jun;375:81–105. doi: 10.1113/jphysiol.1986.sp016107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ribeiro J. A., Sebastião A. M. Adenosine receptors and calcium: basis for proposing a third (A3) adenosine receptor. Prog Neurobiol. 1986;26(3):179–209. doi: 10.1016/0301-0082(86)90015-8. [DOI] [PubMed] [Google Scholar]
  43. Schrader J., Berne R. M., Rubio R. Uptake and metabolism of adenosine by human erythrocyte ghosts. Am J Physiol. 1972 Jul;223(1):159–166. doi: 10.1152/ajplegacy.1972.223.1.159. [DOI] [PubMed] [Google Scholar]
  44. Schrader J., Rubio R., Berne R. M. Inhibition of slow action potentials of guinea pig atrial muscle by adenosine: a possible effect on Ca2+ influx. J Mol Cell Cardiol. 1975 Jun;7(6):427–433. doi: 10.1016/0022-2828(75)90048-6. [DOI] [PubMed] [Google Scholar]
  45. Shamim M. T., Ukena D., Padgett W. L., Hong O., Daly J. W. 8-Aryl-and 8-cycloalkyl-1,3-dipropylxanthines: further potent and selective antagonists for A1-adenosine receptors. J Med Chem. 1988 Mar;31(3):613–617. doi: 10.1021/jm00398a020. [DOI] [PubMed] [Google Scholar]
  46. Sperelakis N., Schneider M. F., Harris E. J. Decreased K+ conductance produced by Ba++ in frog sartorius fibers. J Gen Physiol. 1967 Jul;50(6):1565–1583. doi: 10.1085/jgp.50.6.1565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Stiles G. L., Jacobson K. A. A new high affinity, iodinated adenosine receptor antagonist as a radioligand/photoaffinity crosslinking probe. Mol Pharmacol. 1987 Aug;32(1):184–188. [PMC free article] [PubMed] [Google Scholar]
  48. Ten Eick R., Nawrath H., McDonald T. F., Trautwein W. On the mechanism of the negative inotropic effect of acetylcholine. Pflugers Arch. 1976 Feb 24;361(3):207–213. doi: 10.1007/BF00587284. [DOI] [PubMed] [Google Scholar]
  49. Ukena D., Böhme E., Schwabe U. Effects of several 5'-carboxamide derivatives of adenosine on adenosine receptors of human platelets and rat fat cells. Naunyn Schmiedebergs Arch Pharmacol. 1984 Aug;327(1):36–42. doi: 10.1007/BF00504989. [DOI] [PubMed] [Google Scholar]
  50. Ukena D., Olsson R. A., Daly J. W. Definition of subclasses of adenosine receptors associated with adenylate cyclase: interaction of adenosine analogs with inhibitory A1 receptors and stimulatory A2 receptors. Can J Physiol Pharmacol. 1987 Mar;65(3):365–376. doi: 10.1139/y87-063. [DOI] [PubMed] [Google Scholar]
  51. Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
  52. Williams M. Purine receptors in mammalian tissues: pharmacology and functional significance. Annu Rev Pharmacol Toxicol. 1987;27:315–345. doi: 10.1146/annurev.pa.27.040187.001531. [DOI] [PubMed] [Google Scholar]
  53. van Calker D., Müller M., Hamprecht B. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem. 1979 Nov;33(5):999–1005. doi: 10.1111/j.1471-4159.1979.tb05236.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES