Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1989 Oct;98(2):493–498. doi: 10.1111/j.1476-5381.1989.tb12622.x

Caffeine-induced inhibition of calcium channel current in cultured smooth cells from pregnant rat myometrium.

C Martin 1, C Dacquet 1, C Mironneau 1, J Mironneau 1
PMCID: PMC1854694  PMID: 2555010

Abstract

1. The inhibitory effect of caffeine on the calcium channel current was investigated in cultured myometrial cells isolated from pregnant rats. 2. Caffeine inhibited the calcium channel current elicited from a holding potential of -70 mV in a concentration-dependent manner. The IC50 was estimated to be 35 mM. 3. The caffeine inhibition was not enhanced when calcium channels were opened by a conditioning depolarizing pulse sequence or when the number of inactivated calcium channels was increased at depolarized holding potentials. 4. Caffeine antagonized the specific binding of (+)-[3H]-isradipine to myometrial membranes. The IC50 value found in binding experiments was similar to the IC50 value for half-maximal inhibition of calcium channel current. Caffeine decreased the maximal binding capacity of (+)-[3H]-isradipine to myometrial membranes without any significant change in the dissociation constant. 5. The results indicate that caffeine interacts with a site closely associated with the voltage-dependent calcium channels in myometrial cells and, in turn, inhibits calcium influx.

Full text

PDF
494

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn H. Y., Karaki H., Urakawa N. Inhibitory effects of caffeine on contractions and calcium movement in vascular and intestinal smooth muscle. Br J Pharmacol. 1988 Feb;93(2):267–274. doi: 10.1111/j.1476-5381.1988.tb11430.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amédée T., Mironneau C., Mironneau J. The calcium channel current of pregnant rat single myometrial cells in short-term primary culture. J Physiol. 1987 Nov;392:253–272. doi: 10.1113/jphysiol.1987.sp016779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ashoori F., Takai A., Tomita T. The response of non-pregnant rat myometrium to oxytocin in Ca-free solution. Br J Pharmacol. 1985 Jan;84(1):175–183. [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Dacquet C., Loirand G., Rakotoarisoa L., Mironneau C., Mironneau J. (+)-[3H]-PN 200-110 binding to cell membranes and intact strips of portal vein smooth muscle: characterization and modulation by membrane potential and divalent cations. Br J Pharmacol. 1989 May;97(1):256–262. doi: 10.1111/j.1476-5381.1989.tb11949.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dacquet C., Pacaud P., Loirand G., Mironneau C., Mironneau J. Comparison of binding affinities and calcium current inhibitory effects of a 1,4-dihydropyridine derivative (PN 200-110) in vascular smooth muscle. Biochem Biophys Res Commun. 1988 May 16;152(3):1165–1172. doi: 10.1016/s0006-291x(88)80407-8. [DOI] [PubMed] [Google Scholar]
  7. Ehrlich B. E., Watras J. Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Nature. 1988 Dec 8;336(6199):583–586. doi: 10.1038/336583a0. [DOI] [PubMed] [Google Scholar]
  8. Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
  9. Fabiato A., Fabiato F. Calcium release from the sarcoplasmic reticulum. Circ Res. 1977 Feb;40(2):119–129. doi: 10.1161/01.res.40.2.119. [DOI] [PubMed] [Google Scholar]
  10. Hering S., Beech D. J., Bolton T. B., Lim S. P. Action of nifedipine or BAY K8644 is dependent on calcium channel state in single smooth muscle cells from rabbit ear artery. Pflugers Arch. 1988 May;411(5):590–592. doi: 10.1007/BF00582383. [DOI] [PubMed] [Google Scholar]
  11. Hisayama T., Takayanagi I. Ryanodine: its possible mechanism of action in the caffeine-sensitive calcium store of smooth muscle. Pflugers Arch. 1988 Sep;412(4):376–381. doi: 10.1007/BF01907555. [DOI] [PubMed] [Google Scholar]
  12. Ito Y., Kuriyama H. Caffeine and excitation-contraction coupling in the guinea pig taenia coli. J Gen Physiol. 1971 Apr;57(4):448–463. doi: 10.1085/jgp.57.4.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jmari K., Mironneau C., Mironneau J. Inactivation of calcium channel current in rat uterine smooth muscle: evidence for calcium- and voltage-mediated mechanisms. J Physiol. 1986 Nov;380:111–126. doi: 10.1113/jphysiol.1986.sp016275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leijten P. A., van Breemen C. The effects of caffeine on the noradrenaline-sensitive calcium store in rabbit aorta. J Physiol. 1984 Dec;357:327–339. doi: 10.1113/jphysiol.1984.sp015502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mironneau J. Excitation-contraction coupling in voltage clamped uterine smooth muscle. J Physiol. 1973 Aug;233(1):127–141. doi: 10.1113/jphysiol.1973.sp010301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  17. Ohya Y., Terada K., Yamaguchi K., Inoue R., Okabe K., Kitamura K., Hirata M., Kuriyama H. Effects of inositol phosphates on the membrane activity of smooth muscle cells of the rabbit portal vein. Pflugers Arch. 1988 Sep;412(4):382–389. doi: 10.1007/BF01907556. [DOI] [PubMed] [Google Scholar]
  18. Sanguinetti M. C., Kass R. S. Voltage-dependent block of calcium channel current in the calf cardiac Purkinje fiber by dihydropyridine calcium channel antagonists. Circ Res. 1984 Sep;55(3):336–348. doi: 10.1161/01.res.55.3.336. [DOI] [PubMed] [Google Scholar]
  19. Sato K., Ozaki H., Karaki H. Multiple effects of caffeine on contraction and cytosolic free Ca2+ levels in vascular smooth muscle of rat aorta. Naunyn Schmiedebergs Arch Pharmacol. 1988 Oct;338(4):443–448. doi: 10.1007/BF00172125. [DOI] [PubMed] [Google Scholar]
  20. Small R. C., Boyle J. P., Cortijo J., Curtis-Prior P. B., Davies J. M., Foster R. W., Hofer P. The relaxant and spasmogenic effects of some xanthine derivatives acting on guinea-pig isolated trachealis muscle. Br J Pharmacol. 1988 Aug;94(4):1091–1100. doi: 10.1111/j.1476-5381.1988.tb11627.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Terada K., Kitamura K., Kuriyama H. Blocking actions of Ca2+ antagonists on the Ca2+ channels in the smooth muscle cell membrane of rabbit small intestine. Pflugers Arch. 1987 May;408(6):552–557. doi: 10.1007/BF00581155. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES