Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1989 Nov;98(3):989–997. doi: 10.1111/j.1476-5381.1989.tb14630.x

Pharmacological characterization of 8-OH-DPAT-induced inhibition of rat hippocampal 5-HT release in vivo as measured by microdialysis.

T Sharp 1, S R Bramwell 1, S Hjorth 1, D G Grahame-Smith 1
PMCID: PMC1854745  PMID: 2574066

Abstract

1. We have previously found that the putative 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) decreases hippocampal 5-hydroxytryptamine (5-HT) release in the anaesthetized rat, as measured by brain microdialysis. The present study attempted to characterize the receptor involved in this response using a range of monoamine receptor antagonists. 2. The classical 5-HT receptor antagonists, metergoline (5 mg kg-1 s.c.), methysergide (10 mg kg-1 s.c.) and methiothepin (10 mg kg-1 s.c.) each reduced dialysate levels of 5-HT which complicated their use as antagonists in these experiments. Nevertheless, pretreatment with metergoline but not methiothepin and methysergide partially reduced the 5-HT response to a maximally effective dose of 8-OH-DPAT (0.25 mg kg-1 s.c.). 3. The mixed 5-HT 1/beta-adrenoceptor antagonist pindolol (8 mg kg-1 s.c.) was without effect on spontaneous 5-HT output but attenuated the effect of both maximally (0.25 mg kg-1 s.c.) and submaximally (0.05 mg kg-1 s.c.) effective dose of 8-OH-DPAT. In comparison, propranolol (10 mg kg-1 s.c.) did not affect 5-HT output when injected alone and did not alter the response to 8-OH-DPAT (0.25 mg kg-1 s.c.). 4. The 5-HT2 receptor antagonist ritanserin (0.2 mg kg-1 s.c.) and the 5-HT3 receptor antagonist BRL 43694 (0.5 mg kg-1 s.c.) neither altered 5-HT output alone nor significantly changed the response to 8-OH-DPAT (0.25 mg kg-1 s.c.).(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
995

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrien J., Lanfumey L., Gozlan H., Fattaccini C. M., Hamon M. Biochemical and electrophysiological evidence for an agonist action of CM 57493 at pre- and postsynaptic 5-hydroxytryptamine1A receptors in brain. J Pharmacol Exp Ther. 1989 Mar;248(3):1222–1230. [PubMed] [Google Scholar]
  2. Blier P., de Montigny C. Modification of 5-HT neuron properties by sustained administration of the 5-HT1A agonist gepirone: electrophysiological studies in the rat brain. Synapse. 1987;1(5):470–480. doi: 10.1002/syn.890010511. [DOI] [PubMed] [Google Scholar]
  3. Bourgoin S., Artaud F., Bockaert J., Héry F., Glowinski J., Hamon M. Paradoxical decrease of brain 5-HT turnover by metergoline, a central 5-HT receptor blocker. Naunyn Schmiedebergs Arch Pharmacol. 1978 May;302(3):313–321. doi: 10.1007/BF00508301. [DOI] [PubMed] [Google Scholar]
  4. Cerrito F., Raiteri M. Serotonin release is modulated by presynaptic autoreceptors. Eur J Pharmacol. 1979 Aug 15;57(4):427–430. doi: 10.1016/0014-2999(79)90506-5. [DOI] [PubMed] [Google Scholar]
  5. Doxey J. C., Roach A. G., Smith C. F. Studies on RX 781094: a selective, potent and specific antagonist of alpha 2-adrenoceptors. Br J Pharmacol. 1983 Mar;78(3):489–505. doi: 10.1111/j.1476-5381.1983.tb08809.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Engel G., Göthert M., Hoyer D., Schlicker E., Hillenbrand K. Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Naunyn Schmiedebergs Arch Pharmacol. 1986 Jan;332(1):1–7. doi: 10.1007/BF00633189. [DOI] [PubMed] [Google Scholar]
  7. Farnebo L. O., Hamberger B. Regulation of (3H)5-hydroxytryptamine release from rat brain slices. J Pharm Pharmacol. 1974 Aug;26(8):642–644. doi: 10.1111/j.2042-7158.1974.tb10680.x. [DOI] [PubMed] [Google Scholar]
  8. Gilbert F., Brazell C., Tricklebank M. D., Stahl S. M. Activation of the 5-HT1A receptor subtype increases rat plasma ACTH concentration. Eur J Pharmacol. 1988 Mar 15;147(3):431–439. doi: 10.1016/0014-2999(88)90178-1. [DOI] [PubMed] [Google Scholar]
  9. Goodwin G. M., Green A. R. A behavioural and biochemical study in mice and rats of putative selective agonists and antagonists for 5-HT1 and 5-HT2 receptors. Br J Pharmacol. 1985 Mar;84(3):743–753. doi: 10.1111/j.1476-5381.1985.tb16157.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gudelsky G. A., Koenig J. I., Meltzer H. Y. Thermoregulatory responses to serotonin (5-HT) receptor stimulation in the rat. Evidence for opposing roles of 5-HT2 and 5-HT1A receptors. Neuropharmacology. 1986 Dec;25(12):1307–1313. doi: 10.1016/0028-3908(86)90101-2. [DOI] [PubMed] [Google Scholar]
  11. Göthert M., Weinheimer G. Extracellular 5-hydroxytryptamine inhibits 5-hydroxytryptamine release from rat brain cortex slices. Naunyn Schmiedebergs Arch Pharmacol. 1979 Dec;310(1):93–96. doi: 10.1007/BF00499879. [DOI] [PubMed] [Google Scholar]
  12. Haigler H. J., Aghajanian G. K. Serotonin receptors in the brain. Fed Proc. 1977 Jul;36(8):2159–2164. [PubMed] [Google Scholar]
  13. Hamon M., Bourgoin S., Jagger J., Glowinski J. Effects of LSD on synthesis and release of 5-HT in rat brain slices. Brain Res. 1974 Apr 5;69(2):265–280. doi: 10.1016/0006-8993(74)90006-7. [DOI] [PubMed] [Google Scholar]
  14. Hjorth S., Carlsson A. Is pindolol a mixed agonist-antagonist at central serotonin (5-HT) receptors? Eur J Pharmacol. 1986 Sep 23;129(1-2):131–138. doi: 10.1016/0014-2999(86)90344-4. [DOI] [PubMed] [Google Scholar]
  15. Hjorth S., Magnusson T. The 5-HT 1A receptor agonist, 8-OH-DPAT, preferentially activates cell body 5-HT autoreceptors in rat brain in vivo. Naunyn Schmiedebergs Arch Pharmacol. 1988 Nov;338(5):463–471. doi: 10.1007/BF00179315. [DOI] [PubMed] [Google Scholar]
  16. Hoyer D. Functional correlates of serotonin 5-HT1 recognition sites. J Recept Res. 1988;8(1-4):59–81. doi: 10.3109/10799898809048978. [DOI] [PubMed] [Google Scholar]
  17. Jones L. F., Tackett R. L. Interaction of propranolol with central serotonergic neurons. Life Sci. 1988;43(26):2249–2255. doi: 10.1016/0024-3205(88)90418-3. [DOI] [PubMed] [Google Scholar]
  18. Leysen J. E., Awouters F., Kennis L., Laduron P. M., Vandenberk J., Janssen P. A. Receptor binding profile of R 41 468, a novel antagonist at 5-HT2 receptors. Life Sci. 1981 Mar 2;28(9):1015–1022. doi: 10.1016/0024-3205(81)90747-5. [DOI] [PubMed] [Google Scholar]
  19. Long J. B., Youngblood W. Y., Kizer J. S. Regional differences in the response of serotonergic neurons in rat CNS to drugs. Eur J Pharmacol. 1983 Mar 18;88(1):89–97. doi: 10.1016/0014-2999(83)90395-3. [DOI] [PubMed] [Google Scholar]
  20. Martin L. L., Sanders-Bush E. Comparison of the pharmacological characteristics of 5 HT1 and 5 HT2 binding sites with those of serotonin autoreceptors which modulate serotonin release. Naunyn Schmiedebergs Arch Pharmacol. 1982 Dec;321(3):165–170. doi: 10.1007/BF00505480. [DOI] [PubMed] [Google Scholar]
  21. Middlemiss D. N. 8-Hydroxy-2-(di-n-propylamino) tetralin is devoid of activity at the 5-hydroxytryptamine autoreceptor in rat brain. Implications for the proposed link between the autoreceptor and the [3H] 5-HT recognition site. Naunyn Schmiedebergs Arch Pharmacol. 1984 Aug;327(1):18–22. doi: 10.1007/BF00504986. [DOI] [PubMed] [Google Scholar]
  22. Middlemiss D. N., Fozard J. R. 8-Hydroxy-2-(di-n-propylamino)-tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur J Pharmacol. 1983 May 20;90(1):151–153. doi: 10.1016/0014-2999(83)90230-3. [DOI] [PubMed] [Google Scholar]
  23. Middlemiss D. N. Stereoselective blockade at [3H]5-HT binding sites and at the 5-HT autoreceptor by propranolol. Eur J Pharmacol. 1984 Jun 1;101(3-4):289–293. doi: 10.1016/0014-2999(84)90173-0. [DOI] [PubMed] [Google Scholar]
  24. Middlemiss D. N. The putative 5-HT1 receptor agonist, RU 24969, inhibits the efflux of 5-hydroxytryptamine from rat frontal cortex slices by stimulation of the 5-HT autoreceptor. J Pharm Pharmacol. 1985 Jun;37(6):434–437. doi: 10.1111/j.2042-7158.1985.tb03032.x. [DOI] [PubMed] [Google Scholar]
  25. Mounsey I., Brady K. A., Carroll J., Fisher R., Middlemiss D. N. K+-evoked [3H]-5-HT release from rat frontal cortex slices: the effect of 5-HT agonists and antagonists. Biochem Pharmacol. 1982 Jan 1;31(1):49–53. doi: 10.1016/0006-2952(82)90234-9. [DOI] [PubMed] [Google Scholar]
  26. Schlicker E., Göthert M., Hillenbrand K. Cyanopindolol is a highly potent and selective antagonist at the presynaptic serotonin autoreceptor in the rat brain cortex. Naunyn Schmiedebergs Arch Pharmacol. 1985 Dec;331(4):398–401. doi: 10.1007/BF00500826. [DOI] [PubMed] [Google Scholar]
  27. Schoeffter P., Hoyer D. Centrally acting hypotensive agents with affinity for 5-HT1A binding sites inhibit forskolin-stimulated adenylate cyclase activity in calf hippocampus. Br J Pharmacol. 1988 Nov;95(3):975–985. doi: 10.1111/j.1476-5381.1988.tb11728.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sharp T., Bramwell S. R., Clark D., Grahame-Smith D. G. In vivo measurement of extracellular 5-hydroxytryptamine in hippocampus of the anaesthetized rat using microdialysis: changes in relation to 5-hydroxytryptaminergic neuronal activity. J Neurochem. 1989 Jul;53(1):234–240. doi: 10.1111/j.1471-4159.1989.tb07319.x. [DOI] [PubMed] [Google Scholar]
  29. Sharp T., Bramwell S. R., Grahame-Smith D. G. 5-HT1 agonists reduce 5-hydroxytryptamine release in rat hippocampus in vivo as determined by brain microdialysis. Br J Pharmacol. 1989 Feb;96(2):283–290. doi: 10.1111/j.1476-5381.1989.tb11815.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sinton C. M., Fallon S. L. Electrophysiological evidence for a functional differentiation between subtypes of the 5-HT1 receptor. Eur J Pharmacol. 1988 Nov 22;157(2-3):173–181. doi: 10.1016/0014-2999(88)90380-9. [DOI] [PubMed] [Google Scholar]
  31. Sprouse J. S., Aghajanian G. K. (-)-Propranolol blocks the inhibition of serotonergic dorsal raphe cell firing by 5-HT1A selective agonists. Eur J Pharmacol. 1986 Sep 9;128(3):295–298. doi: 10.1016/0014-2999(86)90782-x. [DOI] [PubMed] [Google Scholar]
  32. Sprouse J. S., Aghajanian G. K. Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse. 1987;1(1):3–9. doi: 10.1002/syn.890010103. [DOI] [PubMed] [Google Scholar]
  33. Tricklebank M. D., Forler C., Fozard J. R. The involvement of subtypes of the 5-HT1 receptor and of catecholaminergic systems in the behavioural response to 8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur J Pharmacol. 1984 Nov 13;106(2):271–282. doi: 10.1016/0014-2999(84)90714-3. [DOI] [PubMed] [Google Scholar]
  34. VanderMaelen C. P., Matheson G. K., Wilderman R. C., Patterson L. A. Inhibition of serotonergic dorsal raphe neurons by systemic and iontophoretic administration of buspirone, a non-benzodiazepine anxiolytic drug. Eur J Pharmacol. 1986 Sep 23;129(1-2):123–130. doi: 10.1016/0014-2999(86)90343-2. [DOI] [PubMed] [Google Scholar]
  35. Verge D., Daval G., Patey A., Gozlan H., el Mestikawy S., Hamon M. Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. Eur J Pharmacol. 1985 Jul 31;113(3):463–464. doi: 10.1016/0014-2999(85)90099-8. [DOI] [PubMed] [Google Scholar]
  36. Yocca F. D., Hyslop D. K., Smith D. W., Maayani S. BMY 7378, a buspirone analog with high affinity, selectivity and low intrinsic activity at the 5-HT1A receptor in rat and guinea pig hippocampal membranes. Eur J Pharmacol. 1987 Jun 4;137(2-3):293–294. doi: 10.1016/0014-2999(87)90241-x. [DOI] [PubMed] [Google Scholar]
  37. Zetterström T., Sharp T., Ungerstedt U. Effect of dopamine D-1 and D-2 receptor selective drugs on dopamine release and metabolism in rat striatum in vivo. Naunyn Schmiedebergs Arch Pharmacol. 1986 Oct;334(2):117–124. doi: 10.1007/BF00505810. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES