Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1984 May;25(5):591–595. doi: 10.1128/aac.25.5.591

Development of resistance to cephalosporins in clinical strains of Citrobacter spp.

T D Gootz, D B Jackson, J C Sherris
PMCID: PMC185593  PMID: 6610388

Abstract

The predominant beta-lactam antibiogram of Citrobacter freundii resembles that of Enterobacter cloacae in demonstrating resistance to cephalothin and cefoxitin with susceptibility to the newer cephalosporins. Four representative strains of C. freundii were reversibly induced to high-level beta-lactamase production by cefoxitin, and mutants with stable, high-level production were selected with cefamandole. The mutants were resistant to several second- and third-generation cephalosporins. Comparisons of isoelectric points and substrate profiles of beta-lactamases from wild-type, induced wild-type, and mutant organisms suggested a close relationship to those from E. cloacae and indicated that C. freundii mutants, like those of E. cloacae, were derepressed for production of beta-lactamase. One primary isolate of C. freundii resembled the mutants in all characteristics. In contrast, most strains of Citrobacter diversus were susceptible to all cephalosporins, and two representative strains showed neither inducible nor mutational resistance. Cefoxitin induction to enhanced beta-lactamase production was demonstrated in a cephalothin-resistant isolate, and a derepressed mutant was selected with cefotaxime. The beta-lactamase from this C. diversus strain differed substantially in substrate profile from that of E. cloacae and C. freundii.

Full text

PDF
593

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arisawa M., Ohshima J., Maruyama H. B. Unusual mode of inhibition of Citrobacter freundii beta-lactamases by ceftriaxone. Antimicrob Agents Chemother. 1983 Feb;23(2):317–319. doi: 10.1128/aac.23.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bauer A. W., Kirby W. M., Sherris J. C., Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966 Apr;45(4):493–496. [PubMed] [Google Scholar]
  3. Beckwith D. G., Jahre J. A. Role of a cefoxitin-inducible beta-lactamase in a case of breakthrough bacteremia. J Clin Microbiol. 1980 Oct;12(4):517–520. doi: 10.1128/jcm.12.4.517-520.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Findell C. M., Sherris J. C. Susceptibility of Enterobacter to cefamandole: evidence for a high mutation rate to resistance. Antimicrob Agents Chemother. 1976 Jun;9(6):970–974. doi: 10.1128/aac.9.6.970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goering R. V., Sanders C. C., Sanders W., Jr Comparison of BL-S786 with cephalothin, cefamandole and cefoxitin in vitro and in treatment of experimental infections in mice. J Antibiot (Tokyo) 1978 Apr;31(4):363–372. doi: 10.7164/antibiotics.31.363. [DOI] [PubMed] [Google Scholar]
  6. Gootz T. D., Sanders C. C. Characterization of beta-lactamase induction in Enterobacter cloacae. Antimicrob Agents Chemother. 1983 Jan;23(1):91–97. doi: 10.1128/aac.23.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gootz T. D., Sanders C. C., Goering R. V. Resistance to cefamandole: derepression of beta-lactamases by cefoxitin and mutation in Enterobacter cloacae. J Infect Dis. 1982 Jul;146(1):34–42. doi: 10.1093/infdis/146.1.34. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Lampe M. F., Allan B. J., Minshew B. H., Sherris J. C. Mutational enzymatic resistance of Enterobacter species to beta-lactam antibiotics. Antimicrob Agents Chemother. 1982 Apr;21(4):655–660. doi: 10.1128/aac.21.4.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Miller A. K., Celozzi E., Pelak B. A., Birnbaum J., Stapley E. O. In vivo inoculum effect and resistance selection with cefamandole and cefoxitin against Enterobacter cloacae in mice. J Antimicrob Chemother. 1980 Nov;6(6):804–806. doi: 10.1093/jac/6.6.804. [DOI] [PubMed] [Google Scholar]
  11. Minami S., Yotsuji A., Inoue M., Mitsuhashi S. Induction of beta-lactamase by various beta-lactam antibiotics in Enterobacter cloacae. Antimicrob Agents Chemother. 1980 Sep;18(3):382–385. doi: 10.1128/aac.18.3.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mizoguchi J., Suginaka H., Kotani S. Mechanism of synergistic action of a combination of ampicillin and dicloxacillin against a beta-lactamase-producing strain of Citrobacter freundii. Antimicrob Agents Chemother. 1979 Oct;16(4):439–443. doi: 10.1128/aac.16.4.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sanders C. C., Moellering R. C., Jr, Martin R. R., Perkins R. L., Strike D. G., Gootz T. D., Sanders W. E., Jr Resistance to cefamandole: a collaborative study of emerging clinical problems. J Infect Dis. 1982 Jan;145(1):118–125. doi: 10.1093/infdis/145.1.118. [DOI] [PubMed] [Google Scholar]
  14. Sanders C. C., Sanders W. E., Jr Emergence of resistance to cefamandole: possible role of cefoxitin-inducible beta-lactamases. Antimicrob Agents Chemother. 1979 Jun;15(6):792–797. doi: 10.1128/aac.15.6.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sanders C. C., Sanders W. E., Jr, Goering R. V. In vitro antagonism of beta-lactam antibiotics by cefoxitin. Antimicrob Agents Chemother. 1982 Jun;21(6):968–975. doi: 10.1128/aac.21.6.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sawai T., Nakajima S., Morohoshi T., Yamagishi S. Thermolabile repression of cephalosporinase synthesis in Citrobacter freundii. Microbiol Immunol. 1977 Nov;21(11):631–638. doi: 10.1111/j.1348-0421.1977.tb00331.x. [DOI] [PubMed] [Google Scholar]
  17. Seeberg A. H., Tolxdorff-Neutzling R. M., Wiedemann B. Chromosomal beta-lactamases of Enterobacter cloacae are responsible for resistance to third-generation cephalosporins. Antimicrob Agents Chemother. 1983 Jun;23(6):918–925. doi: 10.1128/aac.23.6.918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sykes R. B., Matthew M. The beta-lactamases of gram-negative bacteria and their role in resistance to beta-lactam antibiotics. J Antimicrob Chemother. 1976 Jun;2(2):115–157. doi: 10.1093/jac/2.2.115. [DOI] [PubMed] [Google Scholar]
  19. Tajima M., Takenouchi Y., Sugawara S., Inoue M., Mitsuhashi S. Purification and properties of chromosomally mediated beta-lactamase from Citrobacter freundii GN7391. J Gen Microbiol. 1980 Dec;121(2):449–456. doi: 10.1099/00221287-121-2-449. [DOI] [PubMed] [Google Scholar]
  20. Takahashi I., Sawai T., Ando T., Yamagishi S. Cefoxitin resistance by a chromosomal cephalosporinase in Escherichia coli. J Antibiot (Tokyo) 1980 Sep;33(9):1037–1042. doi: 10.7164/antibiotics.33.1037. [DOI] [PubMed] [Google Scholar]
  21. Waterworth P. M., Emmerson A. M. Dissociated resistance among cephalosporins. Antimicrob Agents Chemother. 1979 Apr;15(4):497–503. doi: 10.1128/aac.15.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yamamoto T., Murayama S. Y., Sawai T. Cloning and expression of the gene(s) for cephalosporinase production of Citrobacter freundii. Mol Gen Genet. 1983;190(1):85–91. doi: 10.1007/BF00330328. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES