Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Sep;96(3):1311–1318. doi: 10.1172/JCI118166

Divergent pathways mediate the induction of ANF transgenes in neonatal and hypertrophic ventricular myocardium.

K U Knowlton 1, H A Rockman 1, M Itani 1, A Vovan 1, C E Seidman 1, K R Chien 1
PMCID: PMC185753  PMID: 7657806

Abstract

To determine whether similar or divergent pathways mediate atrial natriuretic factor (ANF) induction in neonatal and hypertrophied adult ventricular myocardium, and to assess whether studies using an in vitro model system of hypertrophy have fidelity to the in vivo context during pressure overload hypertrophy, we generated transgenic mice which harbor either 638 or 3,003 bp of the rat ANF 5' flanking region ligated upstream from a luciferase reporter. Luciferase activity in the ventricles of day 1 transgenic neonates was 8-24-fold higher than the levels expressed in the ventricles of adult mice. Adult mice expressed the luciferase reporter in an appropriate tissue-specific manner. Transverse aortic constriction of adult mice harboring ANF reporter transgenes demonstrated no significant increase in reporter activity in the ventricle. These findings demonstrate that distinct regions of the ANF 5'-flanking region are required for inducible expression of the ANF gene in the hypertrophic adult ventricle compared with those required for atrial-specific and developmentally appropriate expression in the intact neonatal heart. Furthermore, the cis regulatory elements necessary for induction of ANF expression in endothelin-1 or alpha 1-adrenergically stimulated cultured neonatal ventricular myocytes are not sufficient for induction in the in vivo context of pressure overload hypertrophy.

Full text

PDF
1312

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai H., Nakao K., Saito Y., Morii N., Sugawara A., Yamada T., Itoh H., Shiono S., Mukoyama M., Ohkubo H. Augmented expression of atrial natriuretic polypeptide gene in ventricles of spontaneously hypertensive rats (SHR) and SHR-stroke prone. Circ Res. 1988 May;62(5):926–930. doi: 10.1161/01.res.62.5.926. [DOI] [PubMed] [Google Scholar]
  2. Ardati A., Nemer M. A nuclear pathway for alpha 1-adrenergic receptor signaling in cardiac cells. EMBO J. 1993 Dec 15;12(13):5131–5139. doi: 10.1002/j.1460-2075.1993.tb06208.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Argentin S., Ardati A., Tremblay S., Lihrmann I., Robitaille L., Drouin J., Nemer M. Developmental stage-specific regulation of atrial natriuretic factor gene transcription in cardiac cells. Mol Cell Biol. 1994 Jan;14(1):777–790. doi: 10.1128/mcb.14.1.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Argentin S., Sun Y. L., Lihrmann I., Schmidt T. J., Drouin J., Nemer M. Distal cis-acting promoter sequences mediate glucocorticoid stimulation of cardiac atrial natriuretic factor gene transcription. J Biol Chem. 1991 Dec 5;266(34):23315–23322. [PubMed] [Google Scholar]
  5. Bishopric N. H., Kedes L. Adrenergic regulation of the skeletal alpha-actin gene promoter during myocardial cell hypertrophy. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2132–2136. doi: 10.1073/pnas.88.6.2132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bloch K. D., Seidman J. G., Naftilan J. D., Fallon J. T., Seidman C. E. Neonatal atria and ventricles secrete atrial natriuretic factor via tissue-specific secretory pathways. Cell. 1986 Dec 5;47(5):695–702. doi: 10.1016/0092-8674(86)90512-x. [DOI] [PubMed] [Google Scholar]
  7. Bogoyevitch M. A., Glennon P. E., Sugden P. H. Endothelin-1, phorbol esters and phenylephrine stimulate MAP kinase activities in ventricular cardiomyocytes. FEBS Lett. 1993 Feb 15;317(3):271–275. doi: 10.1016/0014-5793(93)81291-7. [DOI] [PubMed] [Google Scholar]
  8. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  9. Buttrick P. M., Kaplan M. L., Kitsis R. N., Leinwand L. A. Distinct behavior of cardiac myosin heavy chain gene constructs in vivo. Discordance with in vitro results. Circ Res. 1993 Jun;72(6):1211–1217. doi: 10.1161/01.res.72.6.1211. [DOI] [PubMed] [Google Scholar]
  10. Buttrick P. M., Kass A., Kitsis R. N., Kaplan M. L., Leinwand L. A. Behavior of genes directly injected into the rat heart in vivo. Circ Res. 1992 Jan;70(1):193–198. doi: 10.1161/01.res.70.1.193. [DOI] [PubMed] [Google Scholar]
  11. Chien K. R., Knowlton K. U., Zhu H., Chien S. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J. 1991 Dec;5(15):3037–3046. doi: 10.1096/fasebj.5.15.1835945. [DOI] [PubMed] [Google Scholar]
  12. Chien K. R., Zhu H., Knowlton K. U., Miller-Hance W., van-Bilsen M., O'Brien T. X., Evans S. M. Transcriptional regulation during cardiac growth and development. Annu Rev Physiol. 1993;55:77–95. doi: 10.1146/annurev.ph.55.030193.000453. [DOI] [PubMed] [Google Scholar]
  13. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  14. Edwards B. S., Ackermann D. M., Lee M. E., Reeder G. S., Wold L. E., Burnett J. C., Jr Identification of atrial natriuretic factor within ventricular tissue in hamsters and humans with congestive heart failure. J Clin Invest. 1988 Jan;81(1):82–86. doi: 10.1172/JCI113314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Field L. J. Atrial natriuretic factor-SV40 T antigen transgenes produce tumors and cardiac arrhythmias in mice. Science. 1988 Feb 26;239(4843):1029–1033. doi: 10.1126/science.2964082. [DOI] [PubMed] [Google Scholar]
  16. Franch H. A., Dixon R. A., Blaine E. H., Siegl P. K. Ventricular atrial natriuretic factor in the cardiomyopathic hamster model of congestive heart failure. Circ Res. 1988 Jan;62(1):31–36. doi: 10.1161/01.res.62.1.31. [DOI] [PubMed] [Google Scholar]
  17. Fujiwara T., Fujiwara H., Takemura G., Mukoyama M., Saito Y., Nakao K., Imura H., Nakano M., Baba K. Expression and distribution of atrial natriuretic polypeptide in the ventricles of children with myocarditis and/or myocardial infarction secondary to Kawasaki disease: immunohistochemical study. Am Heart J. 1990 Sep;120(3):612–618. doi: 10.1016/0002-8703(90)90019-t. [DOI] [PubMed] [Google Scholar]
  18. Gardner D. G., Hedges B. K., Wu J., LaPointe M. C., Deschepper C. F. Expression of the atrial natriuretic peptide gene in human fetal heart. J Clin Endocrinol Metab. 1989 Oct;69(4):729–737. doi: 10.1210/jcem-69-4-729. [DOI] [PubMed] [Google Scholar]
  19. Gardner D. G., Vlasuk G. P., Baxter J. D., Fiddes J. C., Lewicki J. A. Identification of atrial natriuretic factor gene transcripts in the central nervous system of the rat. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2175–2179. doi: 10.1073/pnas.84.8.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Glembotski C. C., Irons C. E., Krown K. A., Murray S. F., Sprenkle A. B., Sei C. A. Myocardial alpha-thrombin receptor activation induces hypertrophy and increases atrial natriuretic factor gene expression. J Biol Chem. 1993 Sep 25;268(27):20646–20652. [PubMed] [Google Scholar]
  21. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Greenway C. V., Innes I. R., Scott G. D. Venoconstriction of hepatic capacitance vessels during hemorrhage in cats: afferent mechanisms. Am J Physiol. 1994 Jul;267(1 Pt 2):H1–10. doi: 10.1152/ajpheart.1994.267.1.H1. [DOI] [PubMed] [Google Scholar]
  23. Gu J., McGrath L. B. Localized endocrine conversion of ventricular cardiocytes in ventricular aneurysm. J Histochem Cytochem. 1990 Nov;38(11):1659–1668. doi: 10.1177/38.11.2145358. [DOI] [PubMed] [Google Scholar]
  24. Ito H., Hiroe M., Hirata Y., Fujisaki H., Adachi S., Akimoto H., Ohta Y., Marumo F. Endothelin ETA receptor antagonist blocks cardiac hypertrophy provoked by hemodynamic overload. Circulation. 1994 May;89(5):2198–2203. doi: 10.1161/01.cir.89.5.2198. [DOI] [PubMed] [Google Scholar]
  25. Iwaki K., Sukhatme V. P., Shubeita H. E., Chien K. R. Alpha- and beta-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. fos/jun expression is associated with sarcomere assembly; Egr-1 induction is primarily an alpha 1-mediated response. J Biol Chem. 1990 Aug 15;265(23):13809–13817. [PubMed] [Google Scholar]
  26. Izumo S., Nadal-Ginard B., Mahdavi V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci U S A. 1988 Jan;85(2):339–343. doi: 10.1073/pnas.85.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kariya K., Karns L. R., Simpson P. C. Expression of a constitutively activated mutant of the beta-isozyme of protein kinase C in cardiac myocytes stimulates the promoter of the beta-myosin heavy chain isogene. J Biol Chem. 1991 Jun 5;266(16):10023–10026. [PubMed] [Google Scholar]
  28. Knowlton K. U., Baracchini E., Ross R. S., Harris A. N., Henderson S. A., Evans S. M., Glembotski C. C., Chien K. R. Co-regulation of the atrial natriuretic factor and cardiac myosin light chain-2 genes during alpha-adrenergic stimulation of neonatal rat ventricular cells. Identification of cis sequences within an embryonic and a constitutive contractile protein gene which mediate inducible expression. J Biol Chem. 1991 Apr 25;266(12):7759–7768. [PubMed] [Google Scholar]
  29. Knowlton K. U., Michel M. C., Itani M., Shubeita H. E., Ishihara K., Brown J. H., Chien K. R. The alpha 1A-adrenergic receptor subtype mediates biochemical, molecular, and morphologic features of cultured myocardial cell hypertrophy. J Biol Chem. 1993 Jul 25;268(21):15374–15380. [PubMed] [Google Scholar]
  30. Komuro I., Kaida T., Shibazaki Y., Kurabayashi M., Katoh Y., Hoh E., Takaku F., Yazaki Y. Stretching cardiac myocytes stimulates protooncogene expression. J Biol Chem. 1990 Mar 5;265(7):3595–3598. [PubMed] [Google Scholar]
  31. Komuro I., Yazaki Y. Control of cardiac gene expression by mechanical stress. Annu Rev Physiol. 1993;55:55–75. doi: 10.1146/annurev.ph.55.030193.000415. [DOI] [PubMed] [Google Scholar]
  32. LaMorte V. J., Thorburn J., Absher D., Spiegel A., Brown J. H., Chien K. R., Feramisco J. R., Knowlton K. U. Gq- and ras-dependent pathways mediate hypertrophy of neonatal rat ventricular myocytes following alpha 1-adrenergic stimulation. J Biol Chem. 1994 May 6;269(18):13490–13496. [PubMed] [Google Scholar]
  33. Lattion A. L., Michel J. B., Arnauld E., Corvol P., Soubrier F. Myocardial recruitment during ANF mRNA increase with volume overload in the rat. Am J Physiol. 1986 Nov;251(5 Pt 2):H890–H896. doi: 10.1152/ajpheart.1986.251.5.H890. [DOI] [PubMed] [Google Scholar]
  34. Lee H. R., Henderson S. A., Reynolds R., Dunnmon P., Yuan D., Chien K. R. Alpha 1-adrenergic stimulation of cardiac gene transcription in neonatal rat myocardial cells. Effects on myosin light chain-2 gene expression. J Biol Chem. 1988 May 25;263(15):7352–7358. [PubMed] [Google Scholar]
  35. Lee R. T., Bloch K. D., Pfeffer J. M., Pfeffer M. A., Neer E. J., Seidman C. E. Atrial natriuretic factor gene expression in ventricles of rats with spontaneous biventricular hypertrophy. J Clin Invest. 1988 Feb;81(2):431–434. doi: 10.1172/JCI113337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lin H., Parmacek M. S., Morle G., Bolling S., Leiden J. M. Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation. 1990 Dec;82(6):2217–2221. doi: 10.1161/01.cir.82.6.2217. [DOI] [PubMed] [Google Scholar]
  37. Long C. S., Ordahl C. P., Simpson P. C. Alpha 1-adrenergic receptor stimulation of sarcomeric actin isogene transcription in hypertrophy of cultured rat heart muscle cells. J Clin Invest. 1989 Mar;83(3):1078–1082. doi: 10.1172/JCI113951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. McDonough P. M., Brown J. H., Glembotski C. C. Phenylephrine and endothelin differentially stimulate cardiac PI hydrolysis and ANF expression. Am J Physiol. 1993 Feb;264(2 Pt 2):H625–H630. doi: 10.1152/ajpheart.1993.264.2.H625. [DOI] [PubMed] [Google Scholar]
  39. McDonough P. M., Glembotski C. C. Induction of atrial natriuretic factor and myosin light chain-2 gene expression in cultured ventricular myocytes by electrical stimulation of contraction. J Biol Chem. 1992 Jun 15;267(17):11665–11668. [PubMed] [Google Scholar]
  40. Milano C. A., Dolber P. C., Rockman H. A., Bond R. A., Venable M. E., Allen L. F., Lefkowitz R. J. Myocardial expression of a constitutively active alpha 1B-adrenergic receptor in transgenic mice induces cardiac hypertrophy. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10109–10113. doi: 10.1073/pnas.91.21.10109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Morgan H. E., Baker K. M. Cardiac hypertrophy. Mechanical, neural, and endocrine dependence. Circulation. 1991 Jan;83(1):13–25. doi: 10.1161/01.cir.83.1.13. [DOI] [PubMed] [Google Scholar]
  42. Orkin S. H. Globin gene regulation and switching: circa 1990. Cell. 1990 Nov 16;63(4):665–672. doi: 10.1016/0092-8674(90)90133-y. [DOI] [PubMed] [Google Scholar]
  43. Parmacek M. S., Vora A. J., Shen T., Barr E., Jung F., Leiden J. M. Identification and characterization of a cardiac-specific transcriptional regulatory element in the slow/cardiac troponin C gene. Mol Cell Biol. 1992 May;12(5):1967–1976. doi: 10.1128/mcb.12.5.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Rockman H. A., Ono S., Ross R. S., Jones L. R., Karimi M., Bhargava V., Ross J., Jr, Chien K. R. Molecular and physiological alterations in murine ventricular dysfunction. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2694–2698. doi: 10.1073/pnas.91.7.2694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rockman H. A., Ross R. S., Harris A. N., Knowlton K. U., Steinhelper M. E., Field L. J., Ross J., Jr, Chien K. R. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8277–8281. doi: 10.1073/pnas.88.18.8277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rosenzweig A., Halazonetis T. D., Seidman J. G., Seidman C. E. Proximal regulatory domains of rat atrial natriuretic factor gene. Circulation. 1991 Sep;84(3):1256–1265. doi: 10.1161/01.cir.84.3.1256. [DOI] [PubMed] [Google Scholar]
  47. Rosenzweig A., Seidman C. E. Atrial natriuretic factor and related peptide hormones. Annu Rev Biochem. 1991;60:229–255. doi: 10.1146/annurev.bi.60.070191.001305. [DOI] [PubMed] [Google Scholar]
  48. Rundle S. E., Fullerton M. J., Funder J. W. Induction of ventricular morphogenesis and atrial natriuretic factor synthesis by thyroid hormone. Mol Cell Endocrinol. 1990 Jan 22;68(2-3):163–168. doi: 10.1016/0303-7207(90)90189-f. [DOI] [PubMed] [Google Scholar]
  49. Sadoshima J., Jahn L., Takahashi T., Kulik T. J., Izumo S. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J Biol Chem. 1992 May 25;267(15):10551–10560. [PubMed] [Google Scholar]
  50. Sadoshima J., Xu Y., Slayter H. S., Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993 Dec 3;75(5):977–984. doi: 10.1016/0092-8674(93)90541-w. [DOI] [PubMed] [Google Scholar]
  51. Saito Y., Nakao K., Arai H., Nishimura K., Okumura K., Obata K., Takemura G., Fujiwara H., Sugawara A., Yamada T. Augmented expression of atrial natriuretic polypeptide gene in ventricle of human failing heart. J Clin Invest. 1989 Jan;83(1):298–305. doi: 10.1172/JCI113872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Schneider M. D., McLellan W. R., Black F. M., Parker T. G. Growth factors, growth factor response elements, and the cardiac phenotype. Basic Res Cardiol. 1992;87 (Suppl 2):33–48. doi: 10.1007/978-3-642-72477-0_4. [DOI] [PubMed] [Google Scholar]
  53. Sei C. A., Irons C. E., Sprenkle A. B., McDonough P. M., Brown J. H., Glembotski C. C. The alpha-adrenergic stimulation of atrial natriuretic factor expression in cardiac myocytes requires calcium influx, protein kinase C, and calmodulin-regulated pathways. J Biol Chem. 1991 Aug 25;266(24):15910–15916. [PubMed] [Google Scholar]
  54. Seidman C. E., Schmidt E. V., Seidman J. G. cis-dominance of rat atrial natriuretic factor gene regulatory sequences in transgenic mice. Can J Physiol Pharmacol. 1991 Oct;69(10):1486–1492. doi: 10.1139/y91-223. [DOI] [PubMed] [Google Scholar]
  55. Seidman C. E., Wong D. W., Jarcho J. A., Bloch K. D., Seidman J. G. Cis-acting sequences that modulate atrial natriuretic factor gene expression. Proc Natl Acad Sci U S A. 1988 Jun;85(11):4104–4108. doi: 10.1073/pnas.85.11.4104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Shubeita H. E., Martinson E. A., Van Bilsen M., Chien K. R., Brown J. H. Transcriptional activation of the cardiac myosin light chain 2 and atrial natriuretic factor genes by protein kinase C in neonatal rat ventricular myocytes. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1305–1309. doi: 10.1073/pnas.89.4.1305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Shubeita H. E., McDonough P. M., Harris A. N., Knowlton K. U., Glembotski C. C., Brown J. H., Chien K. R. Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes. A paracrine mechanism for myocardial cell hypertrophy. J Biol Chem. 1990 Nov 25;265(33):20555–20562. [PubMed] [Google Scholar]
  58. Simpson P. C. Proto-oncogenes and cardiac hypertrophy. Annu Rev Physiol. 1989;51:189–202. doi: 10.1146/annurev.ph.51.030189.001201. [DOI] [PubMed] [Google Scholar]
  59. Simpson P. Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an alpha 1 adrenergic response. J Clin Invest. 1983 Aug;72(2):732–738. doi: 10.1172/JCI111023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Takemura G., Fujiwara H., Mukoyama M., Saito Y., Nakao K., Kawamura A., Ishida M., Kida M., Uegaito T., Tanaka M. Expression and distribution of atrial natriuretic peptide in human hypertrophic ventricle of hypertensive hearts and hearts with hypertrophic cardiomyopathy. Circulation. 1991 Jan;83(1):181–190. doi: 10.1161/01.cir.83.1.181. [DOI] [PubMed] [Google Scholar]
  61. Thorburn A., Thorburn J., Chen S. Y., Powers S., Shubeita H. E., Feramisco J. R., Chien K. R. HRas-dependent pathways can activate morphological and genetic markers of cardiac muscle cell hypertrophy. J Biol Chem. 1993 Jan 25;268(3):2244–2249. [PubMed] [Google Scholar]
  62. Tsuchimochi H., Kurimoto F., Ieki K., Koyama H., Takaku F., Kawana M., Kimata S., Yazaki Y. Atrial natriuretic peptide distribution in fetal and failed adult human hearts. Circulation. 1988 Oct;78(4):920–927. doi: 10.1161/01.cir.78.4.920. [DOI] [PubMed] [Google Scholar]
  63. Waspe L. E., Ordahl C. P., Simpson P. C. The cardiac beta-myosin heavy chain isogene is induced selectively in alpha 1-adrenergic receptor-stimulated hypertrophy of cultured rat heart myocytes. J Clin Invest. 1990 Apr;85(4):1206–1214. doi: 10.1172/JCI114554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Wu J. P., Deschepper C. F., Gardner D. G. Perinatal expression of the atrial natriuretic factor gene in rat cardiac tissue. Am J Physiol. 1988 Sep;255(3 Pt 1):E388–E396. doi: 10.1152/ajpendo.1988.255.3.E388. [DOI] [PubMed] [Google Scholar]
  65. Yasue H., Obata K., Okumura K., Kurose M., Ogawa H., Matsuyama K., Jougasaki M., Saito Y., Nakao K., Imura H. Increased secretion of atrial natriuretic polypeptide from the left ventricle in patients with dilated cardiomyopathy. J Clin Invest. 1989 Jan;83(1):46–51. doi: 10.1172/JCI113883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Zeller R., Bloch K. D., Williams B. S., Arceci R. J., Seidman C. E. Localized expression of the atrial natriuretic factor gene during cardiac embryogenesis. Genes Dev. 1987 Sep;1(7):693–698. doi: 10.1101/gad.1.7.693. [DOI] [PubMed] [Google Scholar]
  67. Zhu H., Garcia A. V., Ross R. S., Evans S. M., Chien K. R. A conserved 28-base-pair element (HF-1) in the rat cardiac myosin light-chain-2 gene confers cardiac-specific and alpha-adrenergic-inducible expression in cultured neonatal rat myocardial cells. Mol Cell Biol. 1991 Apr;11(4):2273–2281. doi: 10.1128/mcb.11.4.2273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES