Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1998 Jan;152(1):179–190.

Temporal pattern of accelerated lung growth after tracheal occlusion in the fetal rabbit.

M E De Paepe 1, B D Johnson 1, K Papadakis 1, K Sueishi 1, F I Luks 1
PMCID: PMC1858114  PMID: 9422535

Abstract

Tracheal occlusion in utero is a potent stimulus of fetal lung growth. We describe the early growth mechanics of fetal lungs and type II pneumocytes after tracheal ligation (TL). Fetal rabbits underwent TL at 24 days gestational age (DGA; late pseudoglandular stage; term = 31 to 33 days) and were sacrificed at time intervals ranging from 1 to 5 days after TL. Lung growth was measured by stereological volumetry and bromodeoxyuridine (BrdU) pulse labeling. Pneumocyte II population kinetics were analyzed using a combination of anti-surfactant protein A and BrdU immunohistochemistry and computer-assisted morphometry. Nonoperated littermates served as controls. TL resulted in dramatically enhanced lung growth (lung weight/body weight was 5.00 +/- 0.81% in TL versus 2.52 +/- 0.13% in controls at 29 DGA; P < 0.001, unpaired Student's t-test). Post-TL lung growth was characterized by a 3-day lag-phase typified by relative stagnation of growth, followed by distension of airspaces, increased cell proliferation, and accelerated architectural and cellular maturation by postligation days 4 and 5. During the proliferation phase, the replicative activity of type II cells was markedly increased (type II cell BrdU labeling index was 10.0 +/- 4.1% in TL versus 1.1 +/- 0.3% for controls at 29 DGA; P < 0.02), but their numerical density decreased (3.0 +/- 0.5 x 10(-3)/microm2 in TL versus 4.5 +/- 0.3 x 10(-3)/microm2 in controls at 29 DGA; P < 0.02), suggesting accelerated terminal differentiation to type I cells. In conclusion, post-TL lung development is characterized by a well defined temporal pattern of lung growth and maturation. The rabbit model lends itself well to study the regulatory mechanisms underlying accelerated fetal lung growth after TL.

Full text

PDF
190

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adzick N. S., Harrison M. R., Glick P. L., Villa R. L., Finkbeiner W. Experimental pulmonary hypoplasia and oligohydramnios: relative contributions of lung fluid and fetal breathing movements. J Pediatr Surg. 1984 Dec;19(6):658–665. doi: 10.1016/s0022-3468(84)80349-8. [DOI] [PubMed] [Google Scholar]
  2. Alcorn D., Adamson T. M., Lambert T. F., Maloney J. E., Ritchie B. C., Robinson P. M. Morphological effects of chronic tracheal ligation and drainage in the fetal lamb lung. J Anat. 1977 Jul;123(Pt 3):649–660. [PMC free article] [PubMed] [Google Scholar]
  3. Asabe K., Toki N., Hashimoto S., Suita S., Sueishi K. An immunohistochemical study of the expression of surfactant apoprotein in the hypoplastic lung of rabbit fetuses induced by oligohydramnios. Am J Pathol. 1994 Sep;145(3):631–639. [PMC free article] [PubMed] [Google Scholar]
  4. Berger L. C., Burri P. H. Timing of the quantitative recovery in the regenerating rat lung. Am Rev Respir Dis. 1985 Oct;132(4):777–783. doi: 10.1164/arrd.1985.132.4.777. [DOI] [PubMed] [Google Scholar]
  5. Bolender R. P., Hyde D. M., Dehoff R. T. Lung morphometry: a new generation of tools and experiments for organ, tissue, cell, and molecular biology. Am J Physiol. 1993 Dec;265(6 Pt 1):L521–L548. doi: 10.1152/ajplung.1993.265.6.L521. [DOI] [PubMed] [Google Scholar]
  6. Brody J. S., Burki R., Kaplan N. Deoxyribonucleic acid synthesis in lung cells during compensatory lung growth after pneumonectomy. Am Rev Respir Dis. 1978 Feb;117(2):307–316. doi: 10.1164/arrd.1978.117.2.307. [DOI] [PubMed] [Google Scholar]
  7. Bullard K. M., Sonne J., Hawgood S., Harrison M. R., Adzick N. S. Tracheal ligation increases cell proliferation but decreases surfactant protein in fetal murine lungs in vitro. J Pediatr Surg. 1997 Feb;32(2):207–213. doi: 10.1016/s0022-3468(97)90180-9. [DOI] [PubMed] [Google Scholar]
  8. CARMEL J. A., FRIEDMAN F., ADAMS F. H. FETAL TRACHEAL LIGATION AND LUNG DEVELOPMENT. Am J Dis Child. 1965 May;109:452–456. doi: 10.1001/archpedi.1965.02090020454014. [DOI] [PubMed] [Google Scholar]
  9. Cooney T. P., Thurlbeck W. M. The radial alveolar count method of Emery and Mithal: a reappraisal 1--postnatal lung growth. Thorax. 1982 Aug;37(8):572–579. doi: 10.1136/thx.37.8.572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DiFiore J. W., Fauza D. O., Slavin R., Peters C. A., Fackler J. C., Wilson J. M. Experimental fetal tracheal ligation reverses the structural and physiological effects of pulmonary hypoplasia in congenital diaphragmatic hernia. J Pediatr Surg. 1994 Feb;29(2):248–257. doi: 10.1016/0022-3468(94)90328-x. [DOI] [PubMed] [Google Scholar]
  11. Gundersen H. J., Bendtsen T. F., Korbo L., Marcussen N., Møller A., Nielsen K., Nyengaard J. R., Pakkenberg B., Sørensen F. B., Vesterby A. Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS. 1988 May;96(5):379–394. doi: 10.1111/j.1699-0463.1988.tb05320.x. [DOI] [PubMed] [Google Scholar]
  12. Harrison M. R., Adzick N. S., Flake A. W., VanderWall K. J., Bealer J. F., Howell L. J., Farrell J. A., Filly R. A., Rosen M. A., Sola A. Correction of congenital diaphragmatic hernia in utero VIII: Response of the hypoplastic lung to tracheal occlusion. J Pediatr Surg. 1996 Oct;31(10):1339–1348. doi: 10.1016/s0022-3468(96)90824-6. [DOI] [PubMed] [Google Scholar]
  13. Hashim E., Laberge J. M., Chen M. F., Quillen E. W., Jr Reversible tracheal obstruction in the fetal sheep: effects on tracheal fluid pressure and lung growth. J Pediatr Surg. 1995 Aug;30(8):1172–1177. doi: 10.1016/0022-3468(95)90015-2. [DOI] [PubMed] [Google Scholar]
  14. Hedrick M. H., Estes J. M., Sullivan K. M., Bealer J. F., Kitterman J. A., Flake A. W., Adzick N. S., Harrison M. R. Plug the lung until it grows (PLUG): a new method to treat congenital diaphragmatic hernia in utero. J Pediatr Surg. 1994 May;29(5):612–617. doi: 10.1016/0022-3468(94)90724-2. [DOI] [PubMed] [Google Scholar]
  15. Hooper S. B., Han V. K., Harding R. Changes in lung expansion alter pulmonary DNA synthesis and IGF-II gene expression in fetal sheep. Am J Physiol. 1993 Oct;265(4 Pt 1):L403–L409. doi: 10.1152/ajplung.1993.265.4.L403. [DOI] [PubMed] [Google Scholar]
  16. Hsu S. M., Raine L., Fanger H. A comparative study of the peroxidase-antiperoxidase method and an avidin-biotin complex method for studying polypeptide hormones with radioimmunoassay antibodies. Am J Clin Pathol. 1981 May;75(5):734–738. doi: 10.1093/ajcp/75.5.734. [DOI] [PubMed] [Google Scholar]
  17. Kikkawa Y., Motoyama E. K., Gluck L. Study of the lungs of fetal and newborn rabbits. Morphologic, biochemical, and surface physical development. Am J Pathol. 1968 Jan;52(1):177–210. [PMC free article] [PubMed] [Google Scholar]
  18. Liu M., Xu J., Tanswell A. K., Post M. Stretch-induced growth-promoting activities stimulate fetal rat lung epithelial cell proliferation. Exp Lung Res. 1993 Jul-Aug;19(4):505–517. doi: 10.3109/01902149309064360. [DOI] [PubMed] [Google Scholar]
  19. Luks F. I., Gilchrist B. F., Jackson B. T., Piasecki G. J. Endoscopic tracheal obstruction with an expanding device in a fetal lamb model: preliminary considerations. Fetal Diagn Ther. 1996 Jan-Feb;11(1):67–71. doi: 10.1159/000264282. [DOI] [PubMed] [Google Scholar]
  20. Nardo L., Hooper S. B., Harding R. Lung hypoplasia can be reversed by short-term obstruction of the trachea in fetal sheep. Pediatr Res. 1995 Nov;38(5):690–696. doi: 10.1203/00006450-199511000-00010. [DOI] [PubMed] [Google Scholar]
  21. O'Toole S. J., Sharma A., Karamanoukian H. L., Holm B., Azizkhan R. G., Glick P. L. Tracheal ligation does not correct the surfactant deficiency associated with congenital diaphragmatic hernia. J Pediatr Surg. 1996 Apr;31(4):546–550. doi: 10.1016/s0022-3468(96)90493-5. [DOI] [PubMed] [Google Scholar]
  22. Papadakis K., Luks F. I., De Paepe M. E., Piasecki G. J., Wesselhoeft C. W., Jr Fetal lung growth after tracheal ligation is not solely a pressure phenomenon. J Pediatr Surg. 1997 Feb;32(2):347–351. doi: 10.1016/s0022-3468(97)90208-6. [DOI] [PubMed] [Google Scholar]
  23. Pringle K. C. Human fetal lung development and related animal models. Clin Obstet Gynecol. 1986 Sep;29(3):502–513. [PubMed] [Google Scholar]
  24. Rannels D. E., White D. M., Watkins C. A. Rapidity of compensatory lung growth following pneumonectomy in adult rats. J Appl Physiol Respir Environ Exerc Physiol. 1979 Feb;46(2):326–333. doi: 10.1152/jappl.1979.46.2.326. [DOI] [PubMed] [Google Scholar]
  25. Reid L., Meyrick B. Etude au microscope électronique du poumon foetal de lapin. Poumon Coeur. 1969;25(3):201–206. [PubMed] [Google Scholar]
  26. Scott J. E., Yang S. Y., Stanik E., Anderson J. E. Influence of strain on [3H]thymidine incorporation, surfactant-related phospholipid synthesis, and cAMP levels in fetal type II alveolar cells. Am J Respir Cell Mol Biol. 1993 Mar;8(3):258–265. doi: 10.1165/ajrcmb/8.3.258. [DOI] [PubMed] [Google Scholar]
  27. Simnett J. D., Fisher J. M., Heppleston A. G. Tissue-specific inhibition of lung alveolar cell mitosis in organ culture. Nature. 1969 Aug 30;223(5209):944–946. doi: 10.1038/223944a0. [DOI] [PubMed] [Google Scholar]
  28. Snyder J. M., Magliato S. A. An ultrastructural, morphometric analysis of rabbit fetal lung type II cell differentiation in vivo. Anat Rec. 1991 Jan;229(1):73–85. doi: 10.1002/ar.1092290109. [DOI] [PubMed] [Google Scholar]
  29. Williams M. C., Mason R. J. Development of the type II cell in the fetal rat lung. Am Rev Respir Dis. 1977 Jun;115(6 Pt 2):37–47. doi: 10.1164/arrd.1977.115.S.37. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES