Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1997 Apr;150(4):1267–1274.

Interleukin-8 receptor B immunoreactivity in brain and neuritic plaques of Alzheimer's disease.

M Xia 1, S Qin 1, M McNamara 1, C Mackay 1, B T Hyman 1
PMCID: PMC1858175  PMID: 9094983

Abstract

Cytokines mediate inflammatory responses through their receptors in the hematopoietic system. In a search for potential mediators of inflammatory responses in Alzheimer's disease, we examined brain for cytokine receptors. Herein we describe interleukin-8 receptor B (IL-8RB, also termed CXCR2) immunoreactivity in the central nervous system. Strong IL-8RB immunoreactivity is present in both Alzheimer's disease and control brains. Neurons, dendrites, and axons are clearly immunoreactive. In Alzheimer's disease, IL-8RB immunoreactivity is also present in some swollen dystrophic neurites of neuritic plaques. Double staining and confocal microscopic analysis reveals that these IL-8RB-positive neurites in plaques are neurofilament positive and are distinct from astrocytic or microglial processes. In general, these IL-8RB-positive neurities do not co-localize with PHF-1 or AT8 (hyperphosphorylated tau) immunoreactive neurites but instead co-localize with beta PP-positive neurites. These results demonstrate for the first time IL-8RB immunoreactivity in the central nervous system and imply a new role for this receptor outside the hematopoietic system. The strong presence of IL-8RB on neurons and the potential of glial cells to produce IL-8 suggest that this system might mediate neuronal-glial interactions.

Full text

PDF
1274

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aloisi F., Carè A., Borsellino G., Gallo P., Rosa S., Bassani A., Cabibbo A., Testa U., Levi G., Peschle C. Production of hemolymphopoietic cytokines (IL-6, IL-8, colony-stimulating factors) by normal human astrocytes in response to IL-1 beta and tumor necrosis factor-alpha. J Immunol. 1992 Oct 1;149(7):2358–2366. [PubMed] [Google Scholar]
  2. Araujo D. M., Cotman C. W. Trophic effects of interleukin-4, -7 and -8 on hippocampal neuronal cultures: potential involvement of glial-derived factors. Brain Res. 1993 Jan 8;600(1):49–55. doi: 10.1016/0006-8993(93)90400-h. [DOI] [PubMed] [Google Scholar]
  3. Baggiolini M., Dewald B., Moser B. Interleukin-8 and related chemotactic cytokines--CXC and CC chemokines. Adv Immunol. 1994;55:97–179. [PubMed] [Google Scholar]
  4. Behl C., Davis J. B., Lesley R., Schubert D. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell. 1994 Jun 17;77(6):817–827. doi: 10.1016/0092-8674(94)90131-7. [DOI] [PubMed] [Google Scholar]
  5. Benowitz L. I., Perrone-Bizzozero N. I., Neve R. L., Rodriguez W. GAP-43 as a marker for structural plasticity in the mature CNS. Prog Brain Res. 1990;86:309–320. doi: 10.1016/s0079-6123(08)63187-8. [DOI] [PubMed] [Google Scholar]
  6. Benowitz L. I., Perrone-Bizzozero N. I. The expression of GAP-43 in relation to neuronal growth and plasticity: when, where, how, and why? Prog Brain Res. 1991;89:69–87. doi: 10.1016/s0079-6123(08)61716-1. [DOI] [PubMed] [Google Scholar]
  7. Chuntharapai A., Lee J., Hébert C. A., Kim K. J. Monoclonal antibodies detect different distribution patterns of IL-8 receptor A and IL-8 receptor B on human peripheral blood leukocytes. J Immunol. 1994 Dec 15;153(12):5682–5688. [PubMed] [Google Scholar]
  8. Geddes J. W., Anderson K. J., Cotman C. W. Senile plaques as aberrant sprout-stimulating structures. Exp Neurol. 1986 Dec;94(3):767–776. doi: 10.1016/0014-4886(86)90254-2. [DOI] [PubMed] [Google Scholar]
  9. Gitter B. D., Cox L. M., Rydel R. E., May P. C. Amyloid beta peptide potentiates cytokine secretion by interleukin-1 beta-activated human astrocytoma cells. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10738–10741. doi: 10.1073/pnas.92.23.10738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goedert M., Jakes R., Vanmechelen E. Monoclonal antibody AT8 recognises tau protein phosphorylated at both serine 202 and threonine 205. Neurosci Lett. 1995 Apr 21;189(3):167–169. doi: 10.1016/0304-3940(95)11484-e. [DOI] [PubMed] [Google Scholar]
  11. Greenberg S. G., Davies P., Schein J. D., Binder L. I. Hydrofluoric acid-treated tau PHF proteins display the same biochemical properties as normal tau. J Biol Chem. 1992 Jan 5;267(1):564–569. [PubMed] [Google Scholar]
  12. Griffin W. S., Sheng J. G., Roberts G. W., Mrak R. E. Interleukin-1 expression in different plaque types in Alzheimer's disease: significance in plaque evolution. J Neuropathol Exp Neurol. 1995 Mar;54(2):276–281. doi: 10.1097/00005072-199503000-00014. [DOI] [PubMed] [Google Scholar]
  13. Hensley K., Carney J. M., Mattson M. P., Aksenova M., Harris M., Wu J. F., Floyd R. A., Butterfield D. A. A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3270–3274. doi: 10.1073/pnas.91.8.3270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Horuk R., Martin A., Hesselgesser J., Hadley T., Lu Z. H., Wang Z. X., Peiper S. C. The Duffy antigen receptor for chemokines: structural analysis and expression in the brain. J Leukoc Biol. 1996 Jan;59(1):29–38. doi: 10.1002/jlb.59.1.29. [DOI] [PubMed] [Google Scholar]
  15. Hyman B. T., Tanzi R. E., Marzloff K., Barbour R., Schenk D. Kunitz protease inhibitor-containing amyloid beta protein precursor immunoreactivity in Alzheimer's disease. J Neuropathol Exp Neurol. 1992 Jan;51(1):76–83. doi: 10.1097/00005072-199201000-00009. [DOI] [PubMed] [Google Scholar]
  16. Jones S. A., Wolf M., Qin S., Mackay C. R., Baggiolini M. Different functions for the interleukin 8 receptors (IL-8R) of human neutrophil leukocytes: NADPH oxidase and phospholipase D are activated through IL-8R1 but not IL-8R2. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6682–6686. doi: 10.1073/pnas.93.13.6682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Khachaturian Z. S. Diagnosis of Alzheimer's disease. Arch Neurol. 1985 Nov;42(11):1097–1105. doi: 10.1001/archneur.1985.04060100083029. [DOI] [PubMed] [Google Scholar]
  18. Koch A. E., Polverini P. J., Kunkel S. L., Harlow L. A., DiPietro L. A., Elner V. M., Elner S. G., Strieter R. M. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science. 1992 Dec 11;258(5089):1798–1801. doi: 10.1126/science.1281554. [DOI] [PubMed] [Google Scholar]
  19. Masliah E., Mallory M., Deerinck T., DeTeresa R., Lamont S., Miller A., Terry R. D., Carragher B., Ellisman M. Re-evaluation of the structural organization of neuritic plaques in Alzheimer's disease. J Neuropathol Exp Neurol. 1993 Nov;52(6):619–632. doi: 10.1097/00005072-199311000-00009. [DOI] [PubMed] [Google Scholar]
  20. Masliah E., Mallory M., Hansen L., Alford M., Albright T., DeTeresa R., Terry R., Baudier J., Saitoh T. Patterns of aberrant sprouting in Alzheimer's disease. Neuron. 1991 May;6(5):729–739. doi: 10.1016/0896-6273(91)90170-5. [DOI] [PubMed] [Google Scholar]
  21. Masliah E., Mallory M., Hansen L., Alford M., DeTeresa R., Terry R., Baudier J., Saitoh T. Localization of amyloid precursor protein in GAP43-immunoreactive aberrant sprouting neurites in Alzheimer's disease. Brain Res. 1992 Mar 6;574(1-2):312–316. doi: 10.1016/0006-8993(92)90831-s. [DOI] [PubMed] [Google Scholar]
  22. McGeer P. L., McGeer E. G. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Brain Res Rev. 1995 Sep;21(2):195–218. doi: 10.1016/0165-0173(95)00011-9. [DOI] [PubMed] [Google Scholar]
  23. Mrak R. E., Sheng J. G., Griffin W. S. Glial cytokines in Alzheimer's disease: review and pathogenic implications. Hum Pathol. 1995 Aug;26(8):816–823. doi: 10.1016/0046-8177(95)90001-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nanney L. B., Mueller S. G., Bueno R., Peiper S. C., Richmond A. Distributions of melanoma growth stimulatory activity of growth-regulated gene and the interleukin-8 receptor B in human wound repair. Am J Pathol. 1995 Nov;147(5):1248–1260. [PMC free article] [PubMed] [Google Scholar]
  25. Nitta T., Allegretta M., Okumura K., Sato K., Steinman L. Neoplastic and reactive human astrocytes express interleukin-8 gene. Neurosurg Rev. 1992;15(3):203–207. doi: 10.1007/BF00345934. [DOI] [PubMed] [Google Scholar]
  26. Patterson P. H. Cytokines in Alzheimer's disease and multiple sclerosis. Curr Opin Neurobiol. 1995 Oct;5(5):642–646. doi: 10.1016/0959-4388(95)80070-0. [DOI] [PubMed] [Google Scholar]
  27. Qin S., LaRosa G., Campbell J. J., Smith-Heath H., Kassam N., Shi X., Zeng L., Buthcher E. C., Mackay C. R. Expression of monocyte chemoattractant protein-1 and interleukin-8 receptors on subsets of T cells: correlation with transendothelial chemotactic potential. Eur J Immunol. 1996 Mar;26(3):640–647. doi: 10.1002/eji.1830260320. [DOI] [PubMed] [Google Scholar]
  28. Remick D. G., Villarete L. Regulation of cytokine gene expression by reactive oxygen and reactive nitrogen intermediates. J Leukoc Biol. 1996 Apr;59(4):471–475. doi: 10.1002/jlb.59.4.471. [DOI] [PubMed] [Google Scholar]
  29. Rogers J., Mufson E. J. Demonstrating immune-related antigens in Alzheimer's disease brain tissue. Neurobiol Aging. 1990 Jul-Aug;11(4):477–479. doi: 10.1016/0197-4580(90)90016-s. [DOI] [PubMed] [Google Scholar]
  30. Van Meir E., Ceska M., Effenberger F., Walz A., Grouzmann E., Desbaillets I., Frei K., Fontana A., de Tribolet N. Interleukin-8 is produced in neoplastic and infectious diseases of the human central nervous system. Cancer Res. 1992 Aug 15;52(16):4297–4305. [PubMed] [Google Scholar]
  31. Wu L., Ruffing N., Shi X., Newman W., Soler D., Mackay C. R., Qin S. Discrete steps in binding and signaling of interleukin-8 with its receptor. J Biol Chem. 1996 Dec 6;271(49):31202–31209. doi: 10.1074/jbc.271.49.31202. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES