Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1998 May;152(5):1237–1245.

Tenascin-C promotes healing of Habu-snake venom-induced glomerulonephritis: studies in knockout congenic mice and in culture.

N Nakao 1, N Hiraiwa 1, A Yoshiki 1, F Ike 1, M Kusakabe 1
PMCID: PMC1858571  PMID: 9588892

Abstract

Mice without the gene for tenascin-C, a multifunctional extracellular matrix protein expressed in many important biological events, including wound healing, did not show any phenotype. However, it is now obvious that the phenotype of deletion of one gene frequently depends on the genetic background. Therefore, we have newly generated tenascin-C knockout mice (KO) by backcrossing original KO into three congenic lines: C57BL/6N, BALB/cA, and GRS/A (GR). And we investigated the disease course of reversible kidney injury, Habu-snake venom-induced proliferative glomerulonephritis. In all strains, the disease was more severe in KO, but the severity varied with the strain. The KO-GR showed irreversibility; all treated KO-GR died by the 4th month due to renal failure. The diseased KO-GR showed abnormal regenerative reactions, including reduced proliferation of mesangial cells, key players in glomerulonephritis, and reduced production of some kinds of cytokines and matrices, leading to poor formation of granulation tissue. In culture, the mesangial cells from the KO-GR had the same potential for proliferation and response to cytokines as controls, but interestingly, to achieve this potential, they required contact with tenascin-C. These reactions were blocked by an anti-tenascin monoclonal antibody. The results of the present study, the first report showing the most dramatic phenotype so far discovered, have strongly suggested the importance of tenascin-C in the resolution of the renal inflammation and that of the genetic background on which the KO was developed.

Full text

PDF
1237

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Assad L., Schwartz M. M., Virtanen I., Gould V. E. Immunolocalization of tenascin and cellular fibronectins in diverse glomerulopathies. Virchows Arch B Cell Pathol Incl Mol Pathol. 1993;63(5):307–316. doi: 10.1007/BF02899277. [DOI] [PubMed] [Google Scholar]
  2. Border W. A., Noble N. A., Yamamoto T., Harper J. R., Yamaguchi Y. u., Pierschbacher M. D., Ruoslahti E. Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature. 1992 Nov 26;360(6402):361–364. doi: 10.1038/360361a0. [DOI] [PubMed] [Google Scholar]
  3. Chiquet-Ehrismann R., Mackie E. J., Pearson C. A., Sakakura T. Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell. 1986 Oct 10;47(1):131–139. doi: 10.1016/0092-8674(86)90374-0. [DOI] [PubMed] [Google Scholar]
  4. Chung C. Y., Murphy-Ullrich J. E., Erickson H. P. Mitogenesis, cell migration, and loss of focal adhesions induced by tenascin-C interacting with its cell surface receptor, annexin II. Mol Biol Cell. 1996 Jun;7(6):883–892. doi: 10.1091/mbc.7.6.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. End P., Panayotou G., Entwistle A., Waterfield M. D., Chiquet M. Tenascin: a modulator of cell growth. Eur J Biochem. 1992 Nov 1;209(3):1041–1051. doi: 10.1111/j.1432-1033.1992.tb17380.x. [DOI] [PubMed] [Google Scholar]
  6. Erickson H. P. Gene knockouts of c-src, transforming growth factor beta 1, and tenascin suggest superfluous, nonfunctional expression of proteins. J Cell Biol. 1993 Mar;120(5):1079–1081. doi: 10.1083/jcb.120.5.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Erickson H. P. Tenascin-C, tenascin-R and tenascin-X: a family of talented proteins in search of functions. Curr Opin Cell Biol. 1993 Oct;5(5):869–876. doi: 10.1016/0955-0674(93)90037-q. [DOI] [PubMed] [Google Scholar]
  8. Forsberg E., Hirsch E., Fröhlich L., Meyer M., Ekblom P., Aszodi A., Werner S., Fässler R. Skin wounds and severed nerves heal normally in mice lacking tenascin-C. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6594–6599. doi: 10.1073/pnas.93.13.6594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fukamauchi F., Mataga N., Wang Y. J., Sato S., Youshiki A., Kusakabe M. Abnormal behavior and neurotransmissions of tenascin gene knockout mouse. Biochem Biophys Res Commun. 1996 Apr 5;221(1):151–156. doi: 10.1006/bbrc.1996.0561. [DOI] [PubMed] [Google Scholar]
  10. Hiraiwa N., Kida H., Sakakura T., Kusakabe M. Induction of tenascin in cancer cells by interactions with embryonic mesenchyme mediated by a diffusible factor. J Cell Sci. 1993 Feb;104(Pt 2):289–296. doi: 10.1242/jcs.104.2.289. [DOI] [PubMed] [Google Scholar]
  11. Johnson R. J., Iida H., Alpers C. E., Majesky M. W., Schwartz S. M., Pritzi P., Gordon K., Gown A. M. Expression of smooth muscle cell phenotype by rat mesangial cells in immune complex nephritis. Alpha-smooth muscle actin is a marker of mesangial cell proliferation. J Clin Invest. 1991 Mar;87(3):847–858. doi: 10.1172/JCI115089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johnson R. J., Raines E. W., Floege J., Yoshimura A., Pritzl P., Alpers C., Ross R. Inhibition of mesangial cell proliferation and matrix expansion in glomerulonephritis in the rat by antibody to platelet-derived growth factor. J Exp Med. 1992 May 1;175(5):1413–1416. doi: 10.1084/jem.175.5.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mackie E. J., Halfter W., Liverani D. Induction of tenascin in healing wounds. J Cell Biol. 1988 Dec;107(6 Pt 2):2757–2767. doi: 10.1083/jcb.107.6.2757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Morita H., Maeda K., Obayashi M., Shinzato T., Nakayama A., Fujita Y., Takai I., Kobayakawa H., Inoue I., Sugiyama S. Induction of irreversible glomerulosclerosis in the rat by repeated injections of a monoclonal anti-Thy-1.1 antibody. Nephron. 1992;60(1):92–99. doi: 10.1159/000186711. [DOI] [PubMed] [Google Scholar]
  15. Morita T., Churg J. Mesangiolysis. Kidney Int. 1983 Jul;24(1):1–9. doi: 10.1038/ki.1983.119. [DOI] [PubMed] [Google Scholar]
  16. Saga Y., Yagi T., Ikawa Y., Sakakura T., Aizawa S. Mice develop normally without tenascin. Genes Dev. 1992 Oct;6(10):1821–1831. doi: 10.1101/gad.6.10.1821. [DOI] [PubMed] [Google Scholar]
  17. Schlondorff D. The glomerular mesangial cell: an expanding role for a specialized pericyte. FASEB J. 1987 Oct;1(4):272–281. doi: 10.1096/fasebj.1.4.3308611. [DOI] [PubMed] [Google Scholar]
  18. Shrestha P., Sumitomo S., Lee C. H., Nagahara K., Kamegai A., Yamanaka T., Takeuchi H., Kusakabe M., Mori M. Tenascin: growth and adhesion modulation--extracellular matrix degrading function: an in vitro study. Eur J Cancer B Oral Oncol. 1996 Mar;32B(2):106–113. doi: 10.1016/0964-1955(95)00074-7. [DOI] [PubMed] [Google Scholar]
  19. Steindler D. A., Settles D., Erickson H. P., Laywell E. D., Yoshiki A., Faissner A., Kusakabe M. Tenascin knockout mice: barrels, boundary molecules, and glial scars. J Neurosci. 1995 Mar;15(3 Pt 1):1971–1983. doi: 10.1523/JNEUROSCI.15-03-01971.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tsukamoto T., Kusakabe M., Saga Y. In situ hybridization with non-radioactive digoxigenin-11-UTP-labeled cRNA probes: localization of developmentally regulated mouse tenascin mRNAs. Int J Dev Biol. 1991 Mar;35(1):25–32. [PubMed] [Google Scholar]
  21. Yayon A., Klagsbrun M., Esko J. D., Leder P., Ornitz D. M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991 Feb 22;64(4):841–848. doi: 10.1016/0092-8674(91)90512-w. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES