Abstract
Streptomycin and chloramphenicol were entrapped within large neutral or anionic unilamellar vesicles of egg phosphatidylcholine prepared by an ether injection method. Both antibiotics in liposomal form were inactive against Escherichia coli in a simple tube dilution assay. A comparison was made of the activities of the free and liposomal forms of the antibiotics against E. coli located within the macrophages of the J774.2 murine cell line. The apparent intracellular antibacterial activity of both antibiotics was increased more than 10-fold by entrapment in neutral liposomes and in the case of chloramphenicol in anionic liposomes containing phosphatidylserine. Anionic liposomes containing phosphatidic acid were much less effective carriers than neutral liposomes for either antibiotic in this in vitro system. Incubation at 4 degrees C of cells with liposomes containing antibiotic or carboxyfluorescein inhibited intracellular antibacterial activity and cell-associated fluorescence. The high intracellular activity of the liposomal antibiotics is consistent with their phagocytic uptake by the macrophages followed by intracellular liposomal degradation and antibiotic release. Liposomal modification of cellular uptake and intracellular distribution of antibiotics may be used to extend the activity of existing and new agents against intracellular infection of the reticuloendothelial system.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alving C. R., Steck E. A., Hanson W. L., Loizeaux P. S., Chapman W. L., Jr, Waits V. B. Improved therapy of experimental leishmaniasis by use of a liposome-encapsulated antimonial drug. Life Sci. 1978 Mar;22(12):1021–1026. doi: 10.1016/0024-3205(78)90270-9. [DOI] [PubMed] [Google Scholar]
- Bonventre P. F., Gregoriandis G. Killing of intraphagocytic Staphylococcus aureus by dihydrostreptomycin entrapped within liposomes. Antimicrob Agents Chemother. 1978 Jun;13(6):1049–1051. doi: 10.1128/aac.13.6.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown K. N., Percival A. Penetration of antimicrobials into tissue culture cells and leucocytes. Scand J Infect Dis Suppl. 1978;(14):251–260. [PubMed] [Google Scholar]
- Chang Y. T. Suppressive activity of streptomycin on the growth of Mycobacterium lepraemurium in macrophage cultures. Appl Microbiol. 1969 May;17(5):750–754. doi: 10.1128/am.17.5.750-754.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chowdhury M. K., Goswami R., Chakrabarti P. Liposome-trapped penicillins in growth inhibition of some penicillin-resistant bacteria. J Appl Bacteriol. 1981 Oct;51(2):223–227. doi: 10.1111/j.1365-2672.1981.tb01236.x. [DOI] [PubMed] [Google Scholar]
- Deamer D., Bangham A. D. Large volume liposomes by an ether vaporization method. Biochim Biophys Acta. 1976 Sep 7;443(3):629–634. doi: 10.1016/0005-2736(76)90483-1. [DOI] [PubMed] [Google Scholar]
- Fraser-Smith E. B., Eppstein D. A., Larsen M. A., Matthews T. R. Protective effect of a muramyl dipeptide analog encapsulated in or mixed with liposomes against Candida albicans infection. Infect Immun. 1983 Jan;39(1):172–178. doi: 10.1128/iai.39.1.172-178.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giloh H., Sedat J. W. Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science. 1982 Sep 24;217(4566):1252–1255. doi: 10.1126/science.7112126. [DOI] [PubMed] [Google Scholar]
- Hanspal M., Ralston G. B. Purification of a trypsin-insensitive fragment of spectrin from human erythrocyte membranes. Biochim Biophys Acta. 1981 Jul 28;669(2):133–139. doi: 10.1016/0005-2795(81)90234-8. [DOI] [PubMed] [Google Scholar]
- Hodges N. A., Mounajed R., Olliff C. J., Padfield J. M. The enhancement of neomycin activity on Escherichia coli by entrapment in liposomes [proceedings]. J Pharm Pharmacol. 1979 Dec;31 (Suppl):85P–85P. doi: 10.1111/j.2042-7158.1979.tb11633.x. [DOI] [PubMed] [Google Scholar]
- Johnson J. D., Hand W. L., Francis J. B., King-Thompson N., Corwin R. W. Antibiotic uptake by alveolar macrophages. J Lab Clin Med. 1980 Mar;95(3):429–439. [PubMed] [Google Scholar]
- Morgan J. R., Williams K. E. Preparation and properties of liposome-associated gentamicin. Antimicrob Agents Chemother. 1980 Apr;17(4):544–548. doi: 10.1128/aac.17.4.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poste G., Bucana C., Raz A., Bugelski P., Kirsh R., Fidler I. J. Analysis of the fate of systemically administered liposomes and implications for their use in drug delivery. Cancer Res. 1982 Apr;42(4):1412–1422. [PubMed] [Google Scholar]
- Prokesch R. C., Hand W. L. Antibiotic entry into human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1982 Mar;21(3):373–380. doi: 10.1128/aac.21.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ralph P., Nakoinz I. Phagocytosis and cytolysis by a macrophage tumour and its cloned cell line. Nature. 1975 Oct 2;257(5525):393–394. doi: 10.1038/257393a0. [DOI] [PubMed] [Google Scholar]
- Ralph P., Prichard J., Cohn M. Reticulum cell sarcoma: an effector cell in antibody-dependent cell-mediated immunity. J Immunol. 1975 Feb;114(2 Pt 2):898–905. [PubMed] [Google Scholar]
- Weinstein J. N., Blumenthal R., Sharrow S. O., Henkart P. A. Antibody-mediated targeting of liposomes. Binding to lymphocytes does not ensure incorporation of vesicle contents into the cells. Biochim Biophys Acta. 1978 May 18;509(2):272–288. doi: 10.1016/0005-2736(78)90047-0. [DOI] [PubMed] [Google Scholar]
- Weinstein J. N., Yoshikami S., Henkart P., Blumenthal R., Hagins W. A. Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker. Science. 1977 Feb 4;195(4277):489–492. doi: 10.1126/science.835007. [DOI] [PubMed] [Google Scholar]