Abstract
We examined the acute effects of elevated wall stress, norepinephrine, and angiotensin II on cardiac protein synthesis as well as protooncogene expression in hearts with established pressure overload left ventricular hypertrophy. Isolated rat hearts with chronic hypertrophy (LVH) were studied 12 wk after ascending aortic banding when systolic function was fully maintained. New protein synthesis (incorporation of [3H]phenylalanine [Phe]) was analyzed in isolated perfused rat hearts after a 3-h protocol; c-fos, c-jun, c-myc, and early growth response gene-1 (EGR-1) mRNA levels (Northern blot) were studied over a time course from 15 to 240 min of perfusion. Under baseline conditions (i.e., before mechanical or neurohormonal stimulation), [3H]-Phe-incorporation (280 nmoles/gram protein/h) and protooncogene mRNA levels were similar in age-matched control and LVH hearts. However, hearts with chronic LVH were characterized by a markedly blunted or absent [3H]-Phe-incorporation after acute imposition of isovolumic systolic load (90 mmHg/gram left ventricle), as well as norepinephrine (10(-6)M), or angiotensin II infusion (10(-8)M plus prazosin 10(-7)M) compared with nonhypertrophied control hearts. Similarly, stimulation of LVH hearts with acute systolic load or norepinephrine was associated with a significantly blunted increase of protooncogene mRNA levels relative to control hearts. The blunted induction of c-fos mRNA in LVH hearts was not due to feedback inhibition, since cycloheximide perfusion of hearts exposed to elevated wall stress further increased the differences between age-matched control and LVH hearts. The data suggest that acute molecular growth responses to mechanical or neurohormonal stimulation are altered in rat hearts with established LVH relative to nonhypertrophied control hearts. This alteration of molecular adaptations in hearts with compensatory hypertrophy may prevent inappropriate excess cardiac growth in response to mechanical and neurohormonal stimuli.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker K. M., Aceto J. F. Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol. 1990 Aug;259(2 Pt 2):H610–H618. doi: 10.1152/ajpheart.1990.259.2.H610. [DOI] [PubMed] [Google Scholar]
- Bruckschlegel G., Holmer S. R., Jandeleit K., Grimm D., Muders F., Kromer E. P., Riegger G. A., Schunkert H. Blockade of the renin-angiotensin system in cardiac pressure-overload hypertrophy in rats. Hypertension. 1995 Feb;25(2):250–259. doi: 10.1161/01.hyp.25.2.250. [DOI] [PubMed] [Google Scholar]
- Butterfield M. C., Chess-Williams R. Enhanced alpha-adrenoceptor responsiveness and receptor number during global ischaemia in the Langendorff perfused rat heart. Br J Pharmacol. 1990 Jul;100(3):641–645. doi: 10.1111/j.1476-5381.1990.tb15860.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capasso J. M., Palackal T., Olivetti G., Anversa P. Left ventricular failure induced by long-term hypertension in rats. Circ Res. 1990 May;66(5):1400–1412. doi: 10.1161/01.res.66.5.1400. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Everett A. W., Sparrow M. P., Taylor R. R. Early changes in myocardial protein synthesis in vivo in response to right ventricular pressure overload in the dog. J Mol Cell Cardiol. 1979 Dec;11(12):1253–1263. doi: 10.1016/0022-2828(79)90005-1. [DOI] [PubMed] [Google Scholar]
- Feldman A. M., Weinberg E. O., Ray P. E., Lorell B. H. Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. Circ Res. 1993 Jul;73(1):184–192. doi: 10.1161/01.res.73.1.184. [DOI] [PubMed] [Google Scholar]
- Ferrario C. M., Spech M. M., Tarazi R. C., Doi Y. Cardiac pumping ability in rats with experimental renal and genetic hypertension. Am J Cardiol. 1979 Oct 22;44(5):979–985. doi: 10.1016/0002-9149(79)90232-7. [DOI] [PubMed] [Google Scholar]
- Grossman W. Cardiac hypertrophy: useful adaptation or pathologic process? Am J Med. 1980 Oct;69(4):576–584. doi: 10.1016/0002-9343(80)90471-4. [DOI] [PubMed] [Google Scholar]
- Grossman W., Jones D., McLaurin L. P. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975 Jul;56(1):56–64. doi: 10.1172/JCI108079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higuchi M., Ikema S., Sakanashi M. Correlation of contractile dysfunction and abnormal tissue energy metabolism during hypoperfusion with norepinephrine in isolated rat hearts: differences between normal and diabetic hearts. J Mol Cell Cardiol. 1992 Oct;24(10):1125–1141. doi: 10.1016/0022-2828(92)93177-l. [DOI] [PubMed] [Google Scholar]
- Isoyama S., Grossman W., Wei J. Y. Effect of age on myocardial adaptation to volume overload in the rat. J Clin Invest. 1988 Jun;81(6):1850–1857. doi: 10.1172/JCI113530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Izumo S., Nadal-Ginard B., Mahdavi V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci U S A. 1988 Jan;85(2):339–343. doi: 10.1073/pnas.85.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz A. M. Angiotensin II: hemodynamic regulator or growth factor? J Mol Cell Cardiol. 1990 Jul;22(7):739–747. doi: 10.1016/0022-2828(90)90086-h. [DOI] [PubMed] [Google Scholar]
- Katz A. M. Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N Engl J Med. 1990 Jan 11;322(2):100–110. doi: 10.1056/NEJM199001113220206. [DOI] [PubMed] [Google Scholar]
- Kent R. L., Hoober J. K., Cooper G., 4th Load responsiveness of protein synthesis in adult mammalian myocardium: role of cardiac deformation linked to sodium influx. Circ Res. 1989 Jan;64(1):74–85. doi: 10.1161/01.res.64.1.74. [DOI] [PubMed] [Google Scholar]
- Levy D. Clinical significance of left ventricular hypertrophy: insights from the Framingham Study. J Cardiovasc Pharmacol. 1991;17 (Suppl 2):S1–S6. doi: 10.1097/00005344-199117002-00002. [DOI] [PubMed] [Google Scholar]
- Litwin S. E., Katz S. E., Weinberg E. O., Lorell B. H., Aurigemma G. P., Douglas P. S. Serial echocardiographic-Doppler assessment of left ventricular geometry and function in rats with pressure-overload hypertrophy. Chronic angiotensin-converting enzyme inhibition attenuates the transition to heart failure. Circulation. 1995 May 15;91(10):2642–2654. doi: 10.1161/01.cir.91.10.2642. [DOI] [PubMed] [Google Scholar]
- Lopez J. J., Lorell B. H., Ingelfinger J. R., Weinberg E. O., Schunkert H., Diamant D., Tang S. S. Distribution and function of cardiac angiotensin AT1- and AT2-receptor subtypes in hypertrophied rat hearts. Am J Physiol. 1994 Aug;267(2 Pt 2):H844–H852. doi: 10.1152/ajpheart.1994.267.2.H844. [DOI] [PubMed] [Google Scholar]
- Martinussen H. J., Waldenström A., Ronquist G. Dynamic changes of myocardial inositoltrisphosphate and cyclic nucleotides: relationship to contractile response in the perfused working rat heart after adrenergic and muscarinic agonist stimulation. Acta Physiol Scand. 1994 Feb;150(2):133–139. doi: 10.1111/j.1748-1716.1994.tb09670.x. [DOI] [PubMed] [Google Scholar]
- Meerson F. Z., Javich M. P., Lerman M. I. Decrease in the rate of RNA and protein synthesis and degradation in the myocardium under long-term compensatory hyperfunction and on aging. J Mol Cell Cardiol. 1978 Feb;10(2):145–159. doi: 10.1016/0022-2828(78)90039-1. [DOI] [PubMed] [Google Scholar]
- Morgan H. E., Baker K. M. Cardiac hypertrophy. Mechanical, neural, and endocrine dependence. Circulation. 1991 Jan;83(1):13–25. doi: 10.1161/01.cir.83.1.13. [DOI] [PubMed] [Google Scholar]
- Morgan H. E., Earl D. C., Broadus A., Wolpert E. B., Giger K. E., Jefferson L. S. Regulation of protein synthesis in heart muscle. I. Effect of amino acid levels on protein synthesis. J Biol Chem. 1971 Apr 10;246(7):2152–2162. [PubMed] [Google Scholar]
- Müller R., Bravo R., Burckhardt J., Curran T. Induction of c-fos gene and protein by growth factors precedes activation of c-myc. Nature. 1984 Dec 20;312(5996):716–720. doi: 10.1038/312716a0. [DOI] [PubMed] [Google Scholar]
- Olivetti G., Ricci R., Lagrasta C., Maniga E., Sonnenblick E. H., Anversa P. Cellular basis of wall remodeling in long-term pressure overload-induced right ventricular hypertrophy in rats. Circ Res. 1988 Sep;63(3):648–657. doi: 10.1161/01.res.63.3.648. [DOI] [PubMed] [Google Scholar]
- Pelliccia A., Maron B. J., Spataro A., Proschan M. A., Spirito P. The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes. N Engl J Med. 1991 Jan 31;324(5):295–301. doi: 10.1056/NEJM199101313240504. [DOI] [PubMed] [Google Scholar]
- Ray A., Aumont M. C., Aussedat J., Bercovici J., Rossi A., Swynghedauw B. Protein and 28S ribosomal RNA fractional turnover rates in the rat heart after abdominal aortic stenosis. Cardiovasc Res. 1987 Aug;21(8):587–592. doi: 10.1093/cvr/21.8.587. [DOI] [PubMed] [Google Scholar]
- Sadoshima J., Xu Y., Slayter H. S., Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993 Dec 3;75(5):977–984. doi: 10.1016/0092-8674(93)90541-w. [DOI] [PubMed] [Google Scholar]
- Scholz J., Troll U., Sandig P., Schmitz W., Scholz H., Schulte Am Esch J. Existence and alpha 1-adrenergic stimulation of inositol polyphosphates in mammalian heart. Mol Pharmacol. 1992 Jul;42(1):134–140. [PubMed] [Google Scholar]
- Schunkert H., Dzau V. J., Tang S. S., Hirsch A. T., Apstein C. S., Lorell B. H. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. J Clin Invest. 1990 Dec;86(6):1913–1920. doi: 10.1172/JCI114924. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schunkert H., Jackson B., Tang S. S., Schoen F. J., Smits J. F., Apstein C. S., Lorell B. H. Distribution and functional significance of cardiac angiotensin converting enzyme in hypertrophied rat hearts. Circulation. 1993 Apr;87(4):1328–1339. doi: 10.1161/01.cir.87.4.1328. [DOI] [PubMed] [Google Scholar]
- Schunkert H., Jahn L., Izumo S., Apstein C. S., Lorell B. H. Localization and regulation of c-fos and c-jun protooncogene induction by systolic wall stress in normal and hypertrophied rat hearts. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11480–11484. doi: 10.1073/pnas.88.24.11480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schunkert H., Sadoshima J., Cornelius T., Kagaya Y., Weinberg E. O., Izumo S., Riegger G., Lorell B. H. Angiotensin II-induced growth responses in isolated adult rat hearts. Evidence for load-independent induction of cardiac protein synthesis by angiotensin II. Circ Res. 1995 Mar;76(3):489–497. doi: 10.1161/01.res.76.3.489. [DOI] [PubMed] [Google Scholar]
- Simpson P. C., Kariya K., Karns L. R., Long C. S., Karliner J. S. Adrenergic hormones and control of cardiac myocyte growth. 1991 May 29-Jun 12Mol Cell Biochem. 104(1-2):35–43. doi: 10.1007/BF00229801. [DOI] [PubMed] [Google Scholar]
- Sunga P. S., Rabkin S. W. Angiotensin II-induced protein phosphorylation in the hypertrophic heart of the Dahl rat. Hypertension. 1992 Nov;20(5):633–642. doi: 10.1161/01.hyp.20.5.633. [DOI] [PubMed] [Google Scholar]
- Takahashi T., Schunkert H., Isoyama S., Wei J. Y., Nadal-Ginard B., Grossman W., Izumo S. Age-related differences in the expression of proto-oncogene and contractile protein genes in response to pressure overload in the rat myocardium. J Clin Invest. 1992 Mar;89(3):939–946. doi: 10.1172/JCI115675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber K. T., Brilla C. G. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation. 1991 Jun;83(6):1849–1865. doi: 10.1161/01.cir.83.6.1849. [DOI] [PubMed] [Google Scholar]
- Weinberg E. O., Schoen F. J., George D., Kagaya Y., Douglas P. S., Litwin S. E., Schunkert H., Benedict C. R., Lorell B. H. Angiotensin-converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis. Circulation. 1994 Sep;90(3):1410–1422. doi: 10.1161/01.cir.90.3.1410. [DOI] [PubMed] [Google Scholar]
- Williams I. H., Chua B. H., Sahms R. H., Siehl D., Morgan H. E. Effects of diabetes on protein turnover in cardiac muscle. Am J Physiol. 1980 Sep;239(3):E178–E185. doi: 10.1152/ajpendo.1980.239.3.E178. [DOI] [PubMed] [Google Scholar]
- von Harsdorf R., Lang R. E., Fullerton M., Woodcock E. A. Myocardial stretch stimulates phosphatidylinositol turnover. Circ Res. 1989 Aug;65(2):494–501. doi: 10.1161/01.res.65.2.494. [DOI] [PubMed] [Google Scholar]