Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1996 Feb;148(2):611–622.

Matrix metalloproteinase 9 (gelatinase B) is expressed in multinucleated giant cells of human giant cell tumor of bone and is associated with vascular invasion.

Y Ueda 1, K Imai 1, H Tsuchiya 1, N Fujimoto 1, I Nakanishi 1, S Katsuda 1, M Seiki 1, Y Okada 1
PMCID: PMC1861675  PMID: 8579123

Abstract

Human giant cell tumor (GCT) consists of multinucleated giant cells and mononuclear stromal cells, and is characterized by frequent vascular invasion without distant metastases. To study the role of matrix metalloproteinases (MMPs) in the vascular invasion, we examined production of MMP-1 (tissue collagenase), -2 (gelatinase A), -3 (stromelysin-1), -9 (gelatinase B), and tissue inhibitors of metalloproteinases (TIMP-1 and -2) in GCT. MMP-9 was highly and predominantly expressed in giant cells by both immunohistochemistry and in situ hybridization. Expression of other MMPs was also observed in some cases but was inconstant. Sandwich enzyme immunoassays demonstrated that MMP-9 is the predominant MMP secreted by GCT. There was a definite imbalance between the amounts of MMP-9 and those of TIMPs in the culture media of GCT, leading to detectable gelatinolytic activity in an assay using 14C-gelatin. Gelatin zymography demonstrated the main activity at about 90 kd, which was identified as the zymogen of MMP-9 by immunoblotting. Immunohistochemistry for type IV collagen and laminin, major basement membrane components, showed that disappearance of the proteins is closely associated with MMP-9-positive giant cells. These results indicate the production of MMP-9 by multinucleated giant cells and suggest that the metalloproteinase may contribute to proteolysis associated with vascular invasion and local bone resorption in human GCT.

Full text

PDF
613

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apte S. S., Olsen B. R., Murphy G. The gene structure of tissue inhibitor of metalloproteinases (TIMP)-3 and its inhibitory activities define the distinct TIMP gene family. J Biol Chem. 1995 Jun 16;270(24):14313–14318. doi: 10.1074/jbc.270.24.14313. [DOI] [PubMed] [Google Scholar]
  2. Bernhard E. J., Gruber S. B., Muschel R. J. Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4293–4297. doi: 10.1073/pnas.91.10.4293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bertoni F., Present D., Sudanese A., Baldini N., Bacchini P., Campanacci M. Giant-cell tumor of bone with pulmonary metastases. Six case reports and a review of the literature. Clin Orthop Relat Res. 1988 Dec;(237):275–285. [PubMed] [Google Scholar]
  4. Birkedal-Hansen H., Moore W. G., Bodden M. K., Windsor L. J., Birkedal-Hansen B., DeCarlo A., Engler J. A. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med. 1993;4(2):197–250. doi: 10.1177/10454411930040020401. [DOI] [PubMed] [Google Scholar]
  5. Caballes R. L. The mechanism of metastasis in the so-called "benign giant cell tumor of bone". Hum Pathol. 1981 Aug;12(8):762–767. doi: 10.1016/s0046-8177(81)80182-7. [DOI] [PubMed] [Google Scholar]
  6. Chambers T. J., Fuller K., McSheehy P. M., Pringle J. A. The effects of calcium regulating hormones on bone resorption by isolated human osteoclastoma cells. J Pathol. 1985 Apr;145(4):297–305. doi: 10.1002/path.1711450403. [DOI] [PubMed] [Google Scholar]
  7. Docherty A. J., Lyons A., Smith B. J., Wright E. M., Stephens P. E., Harris T. J., Murphy G., Reynolds J. J. Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature. 1985 Nov 7;318(6041):66–69. doi: 10.1038/318066a0. [DOI] [PubMed] [Google Scholar]
  8. Enneking W. F. A system of staging musculoskeletal neoplasms. Clin Orthop Relat Res. 1986 Mar;(204):9–24. [PubMed] [Google Scholar]
  9. Freije J. M., Díez-Itza I., Balbín M., Sánchez L. M., Blasco R., Tolivia J., López-Otín C. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J Biol Chem. 1994 Jun 17;269(24):16766–16773. [PubMed] [Google Scholar]
  10. Fridman R., Bird R. E., Hoyhtya M., Oelkuct M., Komarek D., Liang C. M., Berman M. L., Liotta L. A., Stetler-Stevenson W. G., Fuerst T. R. Expression of human recombinant 72 kDa gelatinase and tissue inhibitor of metalloproteinase-2 (TIMP-2): characterization of complex and free enzyme. Biochem J. 1993 Jan 15;289(Pt 2):411–416. doi: 10.1042/bj2890411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fujimoto N., Hosokawa N., Iwata K., Shinya T., Okada Y., Hayakawa T. A one-step sandwich enzyme immunoassay for inactive precursor and complexed forms of human matrix metalloproteinase 9 (92 kDa gelatinase/type IV collagenase, gelatinase B) using monoclonal antibodies. Clin Chim Acta. 1994 Nov;231(1):79–88. doi: 10.1016/0009-8981(94)90256-9. [DOI] [PubMed] [Google Scholar]
  12. Fujimoto N., Mouri N., Iwata K., Ohuchi E., Okada Y., Hayakawa T. A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 2 (72-kDa gelatinase/type IV collagenase) using monoclonal antibodies. Clin Chim Acta. 1993 Nov 30;221(1-2):91–103. doi: 10.1016/0009-8981(93)90024-x. [DOI] [PubMed] [Google Scholar]
  13. Fujimoto N., Zhang J., Iwata K., Shinya T., Okada Y., Hayakawa T. A one-step sandwich enzyme immunoassay for tissue inhibitor of metalloproteinases-2 using monoclonal antibodies. Clin Chim Acta. 1993 Oct 29;220(1):31–45. doi: 10.1016/0009-8981(93)90004-n. [DOI] [PubMed] [Google Scholar]
  14. Goldberg G. I., Strongin A., Collier I. E., Genrich L. T., Marmer B. L. Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J Biol Chem. 1992 Mar 5;267(7):4583–4591. [PubMed] [Google Scholar]
  15. Goldring S. R., Roelke M. S., Petrison K. K., Bhan A. K. Human giant cell tumors of bone identification and characterization of cell types. J Clin Invest. 1987 Feb;79(2):483–491. doi: 10.1172/JCI112838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Harris E. D., Jr, Krane S. M. An endopeptidase from rheumatoid synovial tissue culture. Biochim Biophys Acta. 1972 Feb 28;258(2):566–576. doi: 10.1016/0005-2744(72)90249-5. [DOI] [PubMed] [Google Scholar]
  17. Hibbs M. S., Hasty K. A., Seyer J. M., Kang A. H., Mainardi C. L. Biochemical and immunological characterization of the secreted forms of human neutrophil gelatinase. J Biol Chem. 1985 Feb 25;260(4):2493–2500. [PubMed] [Google Scholar]
  18. Horton M. A., Lewis D., McNulty K., Pringle J. A., Chambers T. J. Monoclonal antibodies to osteoclastomas (giant cell bone tumors): definition of osteoclast-specific cellular antigens. Cancer Res. 1985 Nov;45(11 Pt 2):5663–5669. [PubMed] [Google Scholar]
  19. Kanehisa J., Izumo T., Takeuchi M., Yamanaka T., Fujii T., Takeuchi H. In vitro bone resorption by isolated multinucleated giant cells from giant cell tumour of bone: light and electron microscopic study. Virchows Arch A Pathol Anat Histopathol. 1991;419(4):327–338. doi: 10.1007/BF01606524. [DOI] [PubMed] [Google Scholar]
  20. Kay R. M., Eckardt J. J., Seeger L. L., Mirra J. M., Hak D. J. Pulmonary metastasis of benign giant cell tumor of bone. Six histologically confirmed cases, including one of spontaneous regression. Clin Orthop Relat Res. 1994 May;(302):219–230. [PubMed] [Google Scholar]
  21. Kodama S., Iwata K., Iwata H., Yamashita K., Hayakawa T. Rapid one-step sandwich enzyme immunoassay for tissue inhibitor of metalloproteinases. An application for rheumatoid arthritis serum and plasma. J Immunol Methods. 1990 Feb 20;127(1):103–108. doi: 10.1016/0022-1759(90)90345-v. [DOI] [PubMed] [Google Scholar]
  22. Ladanyi M., Traganos F., Huvos A. G. Benign metastasizing giant cell tumors of bone. A DNA flow cytometric study. Cancer. 1989 Oct 1;64(7):1521–1526. doi: 10.1002/1097-0142(19891001)64:7<1521::aid-cncr2820640727>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
  23. Leco K. J., Khokha R., Pavloff N., Hawkes S. P., Edwards D. R. Tissue inhibitor of metalloproteinases-3 (TIMP-3) is an extracellular matrix-associated protein with a distinctive pattern of expression in mouse cells and tissues. J Biol Chem. 1994 Mar 25;269(12):9352–9360. [PubMed] [Google Scholar]
  24. Liotta L. A., Steeg P. S., Stetler-Stevenson W. G. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991 Jan 25;64(2):327–336. doi: 10.1016/0092-8674(91)90642-c. [DOI] [PubMed] [Google Scholar]
  25. Mignatti P., Rifkin D. B. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev. 1993 Jan;73(1):161–195. doi: 10.1152/physrev.1993.73.1.161. [DOI] [PubMed] [Google Scholar]
  26. Murphy G., Atkinson S., Ward R., Gavrilovic J., Reynolds J. J. The role of plasminogen activators in the regulation of connective tissue metalloproteinases. Ann N Y Acad Sci. 1992 Dec 4;667:1–12. doi: 10.1111/j.1749-6632.1992.tb51590.x. [DOI] [PubMed] [Google Scholar]
  27. Obata K., Iwata K., Okada Y., Kohrin Y., Ohuchi E., Yoshida S., Shinmei M., Hayakawa T. A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 3 (stromelysin-1) using monoclonal antibodies. Clin Chim Acta. 1992 Oct 15;211(1-2):59–72. doi: 10.1016/0009-8981(92)90105-y. [DOI] [PubMed] [Google Scholar]
  28. Ogata Y., Enghild J. J., Nagase H. Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J Biol Chem. 1992 Feb 25;267(6):3581–3584. [PubMed] [Google Scholar]
  29. Okada Y., Gonoji Y., Naka K., Tomita K., Nakanishi I., Iwata K., Yamashita K., Hayakawa T. Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT 1080 human fibrosarcoma cells. Purification and activation of the precursor and enzymic properties. J Biol Chem. 1992 Oct 25;267(30):21712–21719. [PubMed] [Google Scholar]
  30. Okada Y., Harris E. D., Jr, Nagase H. The precursor of a metalloendopeptidase from human rheumatoid synovial fibroblasts. Purification and mechanisms of activation by endopeptidases and 4-aminophenylmercuric acetate. Biochem J. 1988 Sep 15;254(3):731–741. doi: 10.1042/bj2540731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Okada Y., Naka K., Kawamura K., Matsumoto T., Nakanishi I., Fujimoto N., Sato H., Seiki M. Localization of matrix metalloproteinase 9 (92-kilodalton gelatinase/type IV collagenase = gelatinase B) in osteoclasts: implications for bone resorption. Lab Invest. 1995 Mar;72(3):311–322. [PubMed] [Google Scholar]
  32. Okada Y., Takeuchi N., Tomita K., Nakanishi I., Nagase H. Immunolocalization of matrix metalloproteinase 3 (stromelysin) in rheumatoid synovioblasts (B cells): correlation with rheumatoid arthritis. Ann Rheum Dis. 1989 Aug;48(8):645–653. doi: 10.1136/ard.48.8.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Reponen P., Sahlberg C., Munaut C., Thesleff I., Tryggvason K. High expression of 92-kD type IV collagenase (gelatinase B) in the osteoclast lineage during mouse development. J Cell Biol. 1994 Mar;124(6):1091–1102. doi: 10.1083/jcb.124.6.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sasaguri Y., Komiya S., Sugama K., Suzuki K., Inoue A., Morimatsu M., Nagase H. Production of matrix metalloproteinases 2 and 3 (stromelysin) by stromal cells of giant cell tumor of bone. Am J Pathol. 1992 Sep;141(3):611–621. [PMC free article] [PubMed] [Google Scholar]
  35. Sato H., Takino T., Okada Y., Cao J., Shinagawa A., Yamamoto E., Seiki M. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature. 1994 Jul 7;370(6484):61–65. doi: 10.1038/370061a0. [DOI] [PubMed] [Google Scholar]
  36. Stetler-Stevenson W. G., Krutzsch H. C., Liotta L. A. Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. J Biol Chem. 1989 Oct 15;264(29):17374–17378. [PubMed] [Google Scholar]
  37. Stetler-Stevenson W. G., Liotta L. A., Kleiner D. E., Jr Extracellular matrix 6: role of matrix metalloproteinases in tumor invasion and metastasis. FASEB J. 1993 Dec;7(15):1434–1441. doi: 10.1096/fasebj.7.15.8262328. [DOI] [PubMed] [Google Scholar]
  38. Stetler-Stevenson W. G. Type IV collagenases in tumor invasion and metastasis. Cancer Metastasis Rev. 1990 Dec;9(4):289–303. doi: 10.1007/BF00049520. [DOI] [PubMed] [Google Scholar]
  39. Tezuka K., Nemoto K., Tezuka Y., Sato T., Ikeda Y., Kobori M., Kawashima H., Eguchi H., Hakeda Y., Kumegawa M. Identification of matrix metalloproteinase 9 in rabbit osteoclasts. J Biol Chem. 1994 May 27;269(21):15006–15009. [PubMed] [Google Scholar]
  40. Toyosawa S., Ogawa Y., Chang C. K., Hong S. S., Yagi T., Kuwahara H., Wakasa K., Sakurai M. Histochemistry of tartrate-resistant acid phosphatase and carbonic anhydrase isoenzyme II in osteoclast-like giant cells in bone tumours. Virchows Arch A Pathol Anat Histopathol. 1991;418(3):255–261. doi: 10.1007/BF01606064. [DOI] [PubMed] [Google Scholar]
  41. Tryggvason K., Höyhtyä M., Pyke C. Type IV collagenases in invasive tumors. Breast Cancer Res Treat. 1993;24(3):209–218. doi: 10.1007/BF01833261. [DOI] [PubMed] [Google Scholar]
  42. Tubbs W. S., Brown L. R., Beabout J. W., Rock M. G., Unni K. K. Benign giant-cell tumor of bone with pulmonary metastases: clinical findings and radiologic appearance of metastases in 13 cases. AJR Am J Roentgenol. 1992 Feb;158(2):331–334. doi: 10.2214/ajr.158.2.1729794. [DOI] [PubMed] [Google Scholar]
  43. Uría J. A., Ferrando A. A., Velasco G., Freije J. M., López-Otín C. Structure and expression in breast tumors of human TIMP-3, a new member of the metalloproteinase inhibitor family. Cancer Res. 1994 Apr 15;54(8):2091–2094. [PubMed] [Google Scholar]
  44. Van Wart H. E., Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5578–5582. doi: 10.1073/pnas.87.14.5578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Woessner J. F., Jr Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991 May;5(8):2145–2154. [PubMed] [Google Scholar]
  46. Wucherpfennig A. L., Li Y. P., Stetler-Stevenson W. G., Rosenberg A. E., Stashenko P. Expression of 92 kD type IV collagenase/gelatinase B in human osteoclasts. J Bone Miner Res. 1994 Apr;9(4):549–556. doi: 10.1002/jbmr.5650090415. [DOI] [PubMed] [Google Scholar]
  47. Yamagata S., Ito Y., Tanaka R., Shimizu S. Gelatinases of metastatic cell lines of murine colonic carcinoma as detected by substrate-gel electrophoresis. Biochem Biophys Res Commun. 1988 Feb 29;151(1):158–162. doi: 10.1016/0006-291x(88)90573-6. [DOI] [PubMed] [Google Scholar]
  48. Zhang J., Fujimoto N., Iwata K., Sakai T., Okada Y., Hayakawa T. A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 1 (interstitial collagenase) using monoclonal antibodies. Clin Chim Acta. 1993 Oct 15;219(1-2):1–14. doi: 10.1016/0009-8981(93)90192-7. [DOI] [PubMed] [Google Scholar]
  49. Zheng M. H., Fan Y., Wysocki S. J., Lau A. T., Robertson T., Beilharz M., Wood D. J., Papadimitriou J. M. Gene expression of transforming growth factor-beta 1 and its type II receptor in giant cell tumors of bone. Possible involvement in osteoclast-like cell migration. Am J Pathol. 1994 Nov;145(5):1095–1104. [PMC free article] [PubMed] [Google Scholar]
  50. Zheng M. H., Fan Y., Wysocki S., Wood D. J., Papadimitriou J. M. Detection of mRNA for carbonic anhydrase II in human osteoclast-like cells by in situ hybridization. J Bone Miner Res. 1993 Jan;8(1):113–118. doi: 10.1002/jbmr.5650080114. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES