Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1996 Oct;149(4):1287–1302.

Role of matrix metalloproteinases in failure to re-epithelialize after corneal injury.

M E Fini 1, W C Parks 1, W B Rinehart 1, M T Girard 1, M Matsubara 1, J R Cook 1, J A West-Mays 1, P M Sadow 1, R E Burgeson 1, J J Jeffrey 1, M B Raizman 1, R R Krueger 1, J D Zieske 1
PMCID: PMC1865201  PMID: 8863676

Abstract

Delayed re-epithelialization of the cornea after injury usually precedes stromal ulceration. Previous findings using a rat thermal injury model suggested that re-epithelialization is impeded by products of resident corneal cells, which destroy adhesive structures at the basement membrane zone. In this study, we provide additional evidence for this concept. Failure to re-epithelialize was found to correlate with an increase in the amounts of gelatinolytic matrix metalloproteinases present in the rat cornea. One of these gelatinases, gelatinase B, is synthesized by the resident corneal cells, and inhibitions of its synthesis correlated with inhibition of basement membrane dissolution. The matrix metalloproteinases collagenase and stromelysin are also synthesized by resident corneal cells in thermally injured corneas of rabbits, but the timing of bulk enzyme synthesis correlated more closely with deposition of repair tissue in the stroma than with failure to re-epithelialize. Nevertheless, in human corneas with repair defects, gelatinase B and collagenase are synthesized by cells in the basal layer of the epithelium directly adjacent to the basement membrane, suggesting that both could participate in dissolution of this structure. Importantly, treatment of thermally injured corneas with a synthetic inhibitor of matrix metalloproteinases significantly improved basement membrane integrity. These data support the concept that over-expression of matrix metalloproteinases by resident corneal cells impedes re-epithelialization after some types of corneal injury.

Full text

PDF
1288

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander C. M., Werb Z. Proteinases and extracellular matrix remodeling. Curr Opin Cell Biol. 1989 Oct;1(5):974–982. doi: 10.1016/0955-0674(89)90068-9. [DOI] [PubMed] [Google Scholar]
  2. Ando H., Twining S. S., Yue B. Y., Zhou X., Fini M. E., Kaiya T., Higginbotham E. J., Sugar J. MMPs and proteinase inhibitors in the human aqueous humor. Invest Ophthalmol Vis Sci. 1993 Dec;34(13):3541–3548. [PubMed] [Google Scholar]
  3. Bazan H. E., Tao Y., Bazan N. G. Platelet-activating factor induces collagenase expression in corneal epithelial cells. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8678–8682. doi: 10.1073/pnas.90.18.8678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blair H. C., Teitelbaum S. L., Ehlich L. S., Jeffrey J. J. Collagenase production by smooth muscle: correlation of immunoreactive with functional enzyme in the myometrium. J Cell Physiol. 1986 Oct;129(1):111–123. doi: 10.1002/jcp.1041290116. [DOI] [PubMed] [Google Scholar]
  5. Burns F. R., Gray R. D., Paterson C. A. Inhibition of alkali-induced corneal ulceration and perforation by a thiol peptide. Invest Ophthalmol Vis Sci. 1990 Jan;31(1):107–114. [PubMed] [Google Scholar]
  6. Conn H., Berman M., Kenyon K., Langer R., Gage J. Stromal vascularization prevents corneal ulceration. Invest Ophthalmol Vis Sci. 1980 Apr;19(4):362–370. [PubMed] [Google Scholar]
  7. Dohlman C. H. The function of the corneal epithelium in health and disease. The Jonas S. Friedenwald Memorial Lecture. Invest Ophthalmol. 1971 Jun;10(6):383–407. [PubMed] [Google Scholar]
  8. Falanga V. Chronic wounds: pathophysiologic and experimental considerations. J Invest Dermatol. 1993 May;100(5):721–725. doi: 10.1111/1523-1747.ep12472373. [DOI] [PubMed] [Google Scholar]
  9. Fini M. E., Girard M. T. Expression of collagenolytic/gelatinolytic metalloproteinases by normal cornea. Invest Ophthalmol Vis Sci. 1990 Sep;31(9):1779–1788. [PubMed] [Google Scholar]
  10. Fini M. E., Girard M. T. The pattern of metalloproteinase expression by corneal fibroblasts is altered by passage in cell culture. J Cell Sci. 1990 Oct;97(Pt 2):373–383. doi: 10.1242/jcs.97.2.373. [DOI] [PubMed] [Google Scholar]
  11. Fini M. E., Strissel K. J., Girard M. T., Mays J. W., Rinehart W. B. Interleukin 1 alpha mediates collagenase synthesis stimulated by phorbol 12-myristate 13-acetate. J Biol Chem. 1994 Apr 15;269(15):11291–11298. [PubMed] [Google Scholar]
  12. Fini M. E., Yue B. Y., Sugar J. Collagenolytic/gelatinolytic metalloproteinases in normal and keratoconus corneas. Curr Eye Res. 1992 Sep;11(9):849–862. doi: 10.3109/02713689209033483. [DOI] [PubMed] [Google Scholar]
  13. Foster C. S., Zelt R. P., Mai-Phan T., Kenyon K. R. Immunosuppression and selective inflammatory cell depletion. Studies on a guinea pig model of corneal ulceration after ocular alkali burning. Arch Ophthalmol. 1982 Nov;100(11):1820–1824. doi: 10.1001/archopht.1982.01030040800019. [DOI] [PubMed] [Google Scholar]
  14. Freije J. M., Díez-Itza I., Balbín M., Sánchez L. M., Blasco R., Tolivia J., López-Otín C. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J Biol Chem. 1994 Jun 17;269(24):16766–16773. [PubMed] [Google Scholar]
  15. Girard M. T., Matsubara M., Fini M. E. Transforming growth factor-beta and interleukin-1 modulate metalloproteinase expression by corneal stromal cells. Invest Ophthalmol Vis Sci. 1991 Aug;32(9):2441–2454. [PubMed] [Google Scholar]
  16. Girard M. T., Matsubara M., Kublin C., Tessier M. J., Cintron C., Fini M. E. Stromal fibroblasts synthesize collagenase and stromelysin during long-term tissue remodeling. J Cell Sci. 1993 Apr;104(Pt 4):1001–1011. doi: 10.1242/jcs.104.4.1001. [DOI] [PubMed] [Google Scholar]
  17. Goldberg G. I., Wilhelm S. M., Kronberger A., Bauer E. A., Grant G. A., Eisen A. Z. Human fibroblast collagenase. Complete primary structure and homology to an oncogene transformation-induced rat protein. J Biol Chem. 1986 May 15;261(14):6600–6605. [PubMed] [Google Scholar]
  18. Gordon J. M., Bauer E. A., Eisen A. Z. Collagenase in human cornea: immunologic localization. Arch Ophthalmol. 1980 Feb;98(2):341–345. doi: 10.1001/archopht.1980.01020030337022. [DOI] [PubMed] [Google Scholar]
  19. Grinnell F., Ho C. H., Wysocki A. Degradation of fibronectin and vitronectin in chronic wound fluid: analysis by cell blotting, immunoblotting, and cell adhesion assays. J Invest Dermatol. 1992 Apr;98(4):410–416. doi: 10.1111/1523-1747.ep12499839. [DOI] [PubMed] [Google Scholar]
  20. Grobelny D., Poncz L., Galardy R. E. Inhibition of human skin fibroblast collagenase, thermolysin, and Pseudomonas aeruginosa elastase by peptide hydroxamic acids. Biochemistry. 1992 Aug 11;31(31):7152–7154. doi: 10.1021/bi00146a017. [DOI] [PubMed] [Google Scholar]
  21. Hasty K. A., Pourmotabbed T. F., Goldberg G. I., Thompson J. P., Spinella D. G., Stevens R. M., Mainardi C. L. Human neutrophil collagenase. A distinct gene product with homology to other matrix metalloproteinases. J Biol Chem. 1990 Jul 15;265(20):11421–11424. [PubMed] [Google Scholar]
  22. Henriet P., Rousseau G. G., Eeckhout Y. Cloning and sequencing of mouse collagenase cDNA. Divergence of mouse and rat collagenases from the other mammalian collagenases. FEBS Lett. 1992 Sep 28;310(2):175–178. doi: 10.1016/0014-5793(92)81323-e. [DOI] [PubMed] [Google Scholar]
  23. Heussen C., Dowdle E. B. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem. 1980 Feb;102(1):196–202. doi: 10.1016/0003-2697(80)90338-3. [DOI] [PubMed] [Google Scholar]
  24. Kao W. W., Ebert J., Kao C. W., Covington H., Cintron C. Development of monoclonal antibodies recognizing collagenase from rabbit PMN; the presence of this enzyme in ulcerating corneas. Curr Eye Res. 1986 Nov;5(11):801–815. doi: 10.3109/02713688609029231. [DOI] [PubMed] [Google Scholar]
  25. Kurpakus M. A., Stock E. L., Jones J. C. Analysis of wound healing in an in vitro model: early appearance of laminin and a 125 x 10(3) Mr polypeptide during adhesion complex formation. J Cell Sci. 1990 Aug;96(Pt 4):651–660. doi: 10.1242/jcs.96.4.651. [DOI] [PubMed] [Google Scholar]
  26. Lyons J. G., Birkedal-Hansen B., Moore W. G., O'Grady R. L., Birkedal-Hansen H. Characteristics of a 95-kDa matrix metalloproteinase produced by mammary carcinoma cells. Biochemistry. 1991 Feb 12;30(6):1449–1456. doi: 10.1021/bi00220a001. [DOI] [PubMed] [Google Scholar]
  27. Matsubara M., Girard M. T., Kublin C. L., Cintron C., Fini M. E. Differential roles for two gelatinolytic enzymes of the matrix metalloproteinase family in the remodelling cornea. Dev Biol. 1991 Oct;147(2):425–439. doi: 10.1016/0012-1606(91)90300-r. [DOI] [PubMed] [Google Scholar]
  28. Matsubara M., Zieske J. D., Fini M. E. Mechanism of basement membrane dissolution preceding corneal ulceration. Invest Ophthalmol Vis Sci. 1991 Dec;32(13):3221–3237. [PubMed] [Google Scholar]
  29. Quinn C. O., Scott D. K., Brinckerhoff C. E., Matrisian L. M., Jeffrey J. J., Partridge N. C. Rat collagenase. Cloning, amino acid sequence comparison, and parathyroid hormone regulation in osteoblastic cells. J Biol Chem. 1990 Dec 25;265(36):22342–22347. [PubMed] [Google Scholar]
  30. Roswit W. T., Halme J., Jeffrey J. J. Purification and properties of rat uterine procollagenase. Arch Biochem Biophys. 1983 Aug;225(1):285–295. doi: 10.1016/0003-9861(83)90032-2. [DOI] [PubMed] [Google Scholar]
  31. Rousselle P., Lunstrum G. P., Keene D. R., Burgeson R. E. Kalinin: an epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments. J Cell Biol. 1991 Aug;114(3):567–576. doi: 10.1083/jcb.114.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Saarialho-Kere U. K., Chang E. S., Welgus H. G., Parks W. C. Distinct localization of collagenase and tissue inhibitor of metalloproteinases expression in wound healing associated with ulcerative pyogenic granuloma. J Clin Invest. 1992 Nov;90(5):1952–1957. doi: 10.1172/JCI116073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Saarialho-Kere U. K., Crouch E. C., Parks W. C. Matrix metalloproteinase matrilysin is constitutively expressed in adult human exocrine epithelium. J Invest Dermatol. 1995 Aug;105(2):190–196. doi: 10.1111/1523-1747.ep12317104. [DOI] [PubMed] [Google Scholar]
  34. Saarialho-Kere U. K., Kovacs S. O., Pentland A. P., Olerud J. E., Welgus H. G., Parks W. C. Cell-matrix interactions modulate interstitial collagenase expression by human keratinocytes actively involved in wound healing. J Clin Invest. 1993 Dec;92(6):2858–2866. doi: 10.1172/JCI116906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Saarialho-Kere U. K., Pentland A. P., Birkedal-Hansen H., Parks W. C., Welgus H. G. Distinct populations of basal keratinocytes express stromelysin-1 and stromelysin-2 in chronic wounds. J Clin Invest. 1994 Jul;94(1):79–88. doi: 10.1172/JCI117351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sakai L. Y., Keene D. R., Morris N. P., Burgeson R. E. Type VII collagen is a major structural component of anchoring fibrils. J Cell Biol. 1986 Oct;103(4):1577–1586. doi: 10.1083/jcb.103.4.1577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schultz G. S., Strelow S., Stern G. A., Chegini N., Grant M. B., Galardy R. E., Grobelny D., Rowsey J. J., Stonecipher K., Parmley V. Treatment of alkali-injured rabbit corneas with a synthetic inhibitor of matrix metalloproteinases. Invest Ophthalmol Vis Sci. 1992 Nov;33(12):3325–3331. [PubMed] [Google Scholar]
  38. Ståhle-Bäckdahl M., Inoue M., Guidice G. J., Parks W. C. 92-kD gelatinase is produced by eosinophils at the site of blister formation in bullous pemphigoid and cleaves the extracellular domain of recombinant 180-kD bullous pemphigoid autoantigen. J Clin Invest. 1994 May;93(5):2022–2030. doi: 10.1172/JCI117196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Ståhle-Bäckdahl M., Parks W. C. 92-kd gelatinase is actively expressed by eosinophils and stored by neutrophils in squamous cell carcinoma. Am J Pathol. 1993 Apr;142(4):995–1000. [PMC free article] [PubMed] [Google Scholar]
  40. Wilhelm S. M., Collier I. E., Marmer B. L., Eisen A. Z., Grant G. A., Goldberg G. I. SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem. 1989 Oct 15;264(29):17213–17221. [PubMed] [Google Scholar]
  41. Wysocki A. B., Staiano-Coico L., Grinnell F. Wound fluid from chronic leg ulcers contains elevated levels of metalloproteinases MMP-2 and MMP-9. J Invest Dermatol. 1993 Jul;101(1):64–68. doi: 10.1111/1523-1747.ep12359590. [DOI] [PubMed] [Google Scholar]
  42. Zieske J. D., Bukusoglu G., Gipson I. K. Enhancement of vinculin synthesis by migrating stratified squamous epithelium. J Cell Biol. 1989 Aug;109(2):571–576. doi: 10.1083/jcb.109.2.571. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES