Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1996 Jul;149(1):9–13.

Paneth cells express high levels of CD95 ligand transcripts: a unique property among gastrointestinal epithelia.

P Möller 1, H Walczak 1, S Reidl 1, J Sträter 1, P H Krammer 1
PMCID: PMC1865214  PMID: 8686766

Abstract

CD95 (APO-1/Fas), a cell surface receptor and member of the tumor necrosis factor receptor superfamily, induces apoptosis upon oligomerization. CD95 is broadly expressed in normal tissues. The CD95 ligand (CD95L) is a member of the tumor necrosis factor family of cytokines and exists in a membrane-bound and in a soluble form. In vitro, CD95L is expressed and released by activated T lymphocytes. The range of cell types capable of expressing CD95L in vivo is unknown so far. Using a specific probe for human CD95L and sensitive in situ hybridization, we examined CD95L mRNA expression along the gastrointestinal tract. The scarce lymphohistiocytic infiltrate within the lamina propria contained small subsets of medium-sized labeled cells, some of which bad short cytoplasmic protrusions and others of which were lymphoid in morphology. Autochthonous cells of the gastrointestinal tract did not contain any detectable transcripts except for Paneth cells that expressed CD95L mRNA at high levels. In ulcerative colitis, CD95L mRNA-positive inflammatory cells were increased in number, and metaplastic Paneth cells were the only epithelial cells expressing CD95L. Paneth cells are CD95 negative. Therefore, these cells may not commit CD95-mediated autocrine suicide. By secreting soluble CD95L, however, the Paneth cells might contribute to mucosal integrity.

Full text

PDF
10

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellgrau D., Gold D., Selawry H., Moore J., Franzusoff A., Duke R. C. A role for CD95 ligand in preventing graft rejection. Nature. 1995 Oct 19;377(6550):630–632. doi: 10.1038/377630a0. [DOI] [PubMed] [Google Scholar]
  2. Brunner T., Mogil R. J., LaFace D., Yoo N. J., Mahboubi A., Echeverri F., Martin S. J., Force W. R., Lynch D. H., Ware C. F. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature. 1995 Feb 2;373(6513):441–444. doi: 10.1038/373441a0. [DOI] [PubMed] [Google Scholar]
  3. Cleary A. M., Fortune S. M., Yellin M. J., Chess L., Lederman S. Opposing roles of CD95 (Fas/APO-1) and CD40 in the death and rescue of human low density tonsillar B cells. J Immunol. 1995 Oct 1;155(7):3329–3337. [PubMed] [Google Scholar]
  4. Daniel P. T., Krammer P. H. Activation induces sensitivity toward APO-1 (CD95)-mediated apoptosis in human B cells. J Immunol. 1994 Jun 15;152(12):5624–5632. [PubMed] [Google Scholar]
  5. Dhein J., Daniel P. T., Trauth B. C., Oehm A., Möller P., Krammer P. H. Induction of apoptosis by monoclonal antibody anti-APO-1 class switch variants is dependent on cross-linking of APO-1 cell surface antigens. J Immunol. 1992 Nov 15;149(10):3166–3173. [PubMed] [Google Scholar]
  6. Dhein J., Walczak H., Bäumler C., Debatin K. M., Krammer P. H. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95) Nature. 1995 Feb 2;373(6513):438–441. doi: 10.1038/373438a0. [DOI] [PubMed] [Google Scholar]
  7. Ju S. T., Panka D. J., Cui H., Ettinger R., el-Khatib M., Sherr D. H., Stanger B. Z., Marshak-Rothstein A. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature. 1995 Feb 2;373(6513):444–448. doi: 10.1038/373444a0. [DOI] [PubMed] [Google Scholar]
  8. Kagan B. L., Ganz T., Lehrer R. I. Defensins: a family of antimicrobial and cytotoxic peptides. Toxicology. 1994 Feb 28;87(1-3):131–149. doi: 10.1016/0300-483x(94)90158-9. [DOI] [PubMed] [Google Scholar]
  9. Keshav S., Lawson L., Chung L. P., Stein M., Perry V. H., Gordon S. Tumor necrosis factor mRNA localized to Paneth cells of normal murine intestinal epithelium by in situ hybridization. J Exp Med. 1990 Jan 1;171(1):327–332. doi: 10.1084/jem.171.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Leithäuser F., Dhein J., Mechtersheimer G., Koretz K., Brüderlein S., Henne C., Schmidt A., Debatin K. M., Krammer P. H., Möller P. Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells. Lab Invest. 1993 Oct;69(4):415–429. [PubMed] [Google Scholar]
  11. Mariani S. M., Matiba B., Bäumler C., Krammer P. H. Regulation of cell surface APO-1/Fas (CD95) ligand expression by metalloproteases. Eur J Immunol. 1995 Aug;25(8):2303–2307. doi: 10.1002/eji.1830250828. [DOI] [PubMed] [Google Scholar]
  12. Möller P., Henne C., Leithäuser F., Eichelmann A., Schmidt A., Brüderlein S., Dhein J., Krammer P. H. Coregulation of the APO-1 antigen with intercellular adhesion molecule-1 (CD54) in tonsillar B cells and coordinate expression in follicular center B cells and in follicle center and mediastinal B-cell lymphomas. Blood. 1993 Apr 15;81(8):2067–2075. [PubMed] [Google Scholar]
  13. Nagata S., Golstein P. The Fas death factor. Science. 1995 Mar 10;267(5203):1449–1456. doi: 10.1126/science.7533326. [DOI] [PubMed] [Google Scholar]
  14. Ouellette A. J., Greco R. M., James M., Frederick D., Naftilan J., Fallon J. T. Developmental regulation of cryptdin, a corticostatin/defensin precursor mRNA in mouse small intestinal crypt epithelium. J Cell Biol. 1989 May;108(5):1687–1695. doi: 10.1083/jcb.108.5.1687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sandow M. J., Whitehead R. The Paneth cell. Gut. 1979 May;20(5):420–431. doi: 10.1136/gut.20.5.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schmauder-Chock E. A., Chock S. P., Patchen M. L. Ultrastructural localization of tumour necrosis factor-alpha. Histochem J. 1994 Feb;26(2):142–151. doi: 10.1007/BF00157963. [DOI] [PubMed] [Google Scholar]
  17. Suda T., Takahashi T., Golstein P., Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell. 1993 Dec 17;75(6):1169–1178. doi: 10.1016/0092-8674(93)90326-l. [DOI] [PubMed] [Google Scholar]
  18. Takahashi T., Tanaka M., Inazawa J., Abe T., Suda T., Nagata S. Human Fas ligand: gene structure, chromosomal location and species specificity. Int Immunol. 1994 Oct;6(10):1567–1574. doi: 10.1093/intimm/6.10.1567. [DOI] [PubMed] [Google Scholar]
  19. Tan X., Hsueh W., Gonzalez-Crussi F. Cellular localization of tumor necrosis factor (TNF)-alpha transcripts in normal bowel and in necrotizing enterocolitis. TNF gene expression by Paneth cells, intestinal eosinophils, and macrophages. Am J Pathol. 1993 Jun;142(6):1858–1865. [PMC free article] [PubMed] [Google Scholar]
  20. Tanaka M., Suda T., Takahashi T., Nagata S. Expression of the functional soluble form of human fas ligand in activated lymphocytes. EMBO J. 1995 Mar 15;14(6):1129–1135. doi: 10.1002/j.1460-2075.1995.tb07096.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Trauth B. C., Klas C., Peters A. M., Matzku S., Möller P., Falk W., Debatin K. M., Krammer P. H. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science. 1989 Jul 21;245(4915):301–305. doi: 10.1126/science.2787530. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES