Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1996 Dec;149(6):2005–2022.

Expression of inducible nitric oxide synthase and its involvement in pulmonary granulomatous inflammation in rats.

K Setoguchi 1, M Takeya 1, T Akaike 1, M Suga 1, R Hattori 1, H Maeda 1, M Ando 1, K Takahashi 1
PMCID: PMC1865352  PMID: 8952535

Abstract

Two types of pulmonary granulomatosis were produced in rats by intratracheal instillation of zymosan or silica. In both models, immunostaining with anti-rat monoclonal antibody for inducible nitric oxide synthase (iNOS), ANOS11, showed that the intensity of iNOS immunoreactivity in the inflammatory lesions peaked at 3 days and declined thereafter. Immunohistochemical double staining and in situ hybridization demonstrated the expression of iNOS in neutrophils, monocyte-derived macrophages, and bronchiolar epithelial cells in the pulmonary lesions. Electron spin resonance spectroscopy revealed the production of an excessive amount of nitric oxide (NO) in the pulmonary lesions. Immunostaining with a polyclonal antibody against nitrotyrosine indicated the formation of nitrotyrosine residues in the granulomatous lesions, particularly in the periphery of the lesions, providing indirect evidence for the generation of peroxynitrite anion in the zymosan- or silica-instilled lungs. Administration of N omega-nitro-L-arginine methyl ester or S-methylisothiourea sulfate, which significantly suppressed NO production, resulted in marked reduction of monocyte/macrophage infiltration as well as in inhibition of induction of monocyte chemoattractant protein-1 in the lesions. These data indicate that NO and its more reactive product peroxynitrite anion may be important mediators of granuloma formation in the lung.

Full text

PDF
2005

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi H., Iida S., Oguchi S., Ohshima H., Suzuki H., Nagasaki K., Kawasaki H., Sugimura T., Esumi H. Molecular cloning of a cDNA encoding an inducible calmodulin-dependent nitric-oxide synthase from rat liver and its expression in COS 1 cells. Eur J Biochem. 1993 Oct 1;217(1):37–43. doi: 10.1111/j.1432-1033.1993.tb18215.x. [DOI] [PubMed] [Google Scholar]
  2. Akaike T., Noguchi Y., Ijiri S., Setoguchi K., Suga M., Zheng Y. M., Dietzschold B., Maeda H. Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2448–2453. doi: 10.1073/pnas.93.6.2448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Akaike T., Weihe E., Schaefer M., Fu Z. F., Zheng Y. M., Vogel W., Schmidt H., Koprowski H., Dietzschold B. Effect of neurotropic virus infection on neuronal and inducible nitric oxide synthase activity in rat brain. J Neurovirol. 1995 Mar;1(1):118–125. doi: 10.3109/13550289509111016. [DOI] [PubMed] [Google Scholar]
  4. Barbé E., Damoiseaux J. G., Döpp E. A., Dijkstra C. D. Characterization and expression of the antigen present on resident rat macrophages recognized by monoclonal antibody ED2. Immunobiology. 1990 Dec;182(1):88–99. doi: 10.1016/S0171-2985(11)80586-3. [DOI] [PubMed] [Google Scholar]
  5. Beckmann J. S., Ye Y. Z., Anderson P. G., Chen J., Accavitti M. A., Tarpey M. M., White C. R. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe Seyler. 1994 Feb;375(2):81–88. doi: 10.1515/bchm3.1994.375.2.81. [DOI] [PubMed] [Google Scholar]
  6. Berton G., Gordon S. Modulation of macrophage mannosyl-specific receptors by cultivation on immobilized zymosan. Effects on superoxide-anion release and phagocytosis. Immunology. 1983 Aug;49(4):705–715. [PMC free article] [PubMed] [Google Scholar]
  7. Blackford J. A., Jr, Antonini J. M., Castranova V., Dey R. D. Intratracheal instillation of silica up-regulates inducible nitric oxide synthase gene expression and increases nitric oxide production in alveolar macrophages and neutrophils. Am J Respir Cell Mol Biol. 1994 Oct;11(4):426–431. doi: 10.1165/ajrcmb.11.4.7522485. [DOI] [PubMed] [Google Scholar]
  8. Blussé van Oud Alblas A., van der Linden-Schrever B., Van Furth R. Origin and kinetics of pulmonary macrophages during an inflammatory reaction induced by intra-alveolar administration of aerosolized heat-killed BCG. Am Rev Respir Dis. 1983 Aug;128(2):276–281. doi: 10.1164/arrd.1983.128.2.276. [DOI] [PubMed] [Google Scholar]
  9. Cunha F. Q., Assreuy J., Moncada S., Liew F. Y. Phagocytosis and induction of nitric oxide synthase in murine macrophages. Immunology. 1993 Jul;79(3):408–411. [PMC free article] [PubMed] [Google Scholar]
  10. Doi K., Akaike T., Horie H., Noguchi Y., Fujii S., Beppu T., Ogawa M., Maeda H. Excessive production of nitric oxide in rat solid tumor and its implication in rapid tumor growth. Cancer. 1996 Apr 15;77(8 Suppl):1598–1604. doi: 10.1002/(SICI)1097-0142(19960415)77:8<1598::AID-CNCR27>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  11. Ezekowitz R. A., Sim R. B., Hill M., Gordon S. Local opsonization by secreted macrophage complement components. Role of receptors for complement in uptake of zymosan. J Exp Med. 1984 Jan 1;159(1):244–260. doi: 10.1084/jem.159.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Flory C. M., Jones M. L., Warren J. S. Pulmonary granuloma formation in the rat is partially dependent on monocyte chemoattractant protein 1. Lab Invest. 1993 Oct;69(4):396–404. [PubMed] [Google Scholar]
  13. Goodrum K. J., McCormick L. L., Schneider B. Group B streptococcus-induced nitric oxide production in murine macrophages is CR3 (CD11b/CD18) dependent. Infect Immun. 1994 Aug;62(8):3102–3107. doi: 10.1128/iai.62.8.3102-3107.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gotoh S., Itoh M., Fujii Y., Arai S., Sendo F. Enhancement of the expression of a rat neutrophil-specific cell surface antigen by activation with phorbol myristate acetate and concanavalin A. J Immunol. 1986 Jul 15;137(2):643–650. [PubMed] [Google Scholar]
  15. Hattori R., Kosuga K., Eizawa H., Sase K., Inoue R., Sunamoto M., Ichimori Y., Sato K., Mori T., Takahashi K. Stabilization of inducible nitric oxide synthase by monoclonal antibodies. Hybridoma. 1993 Dec;12(6):763–770. doi: 10.1089/hyb.1993.12.763. [DOI] [PubMed] [Google Scholar]
  16. Hirota S., Ito A., Morii E., Wanaka A., Tohyama M., Kitamura Y., Nomura S. Localization of mRNA for c-kit receptor and its ligand in the brain of adult rats: an analysis using in situ hybridization histochemistry. Brain Res Mol Brain Res. 1992 Sep;15(1-2):47–54. doi: 10.1016/0169-328x(92)90150-a. [DOI] [PubMed] [Google Scholar]
  17. Huie R. E., Padmaja S. The reaction of no with superoxide. Free Radic Res Commun. 1993;18(4):195–199. doi: 10.3109/10715769309145868. [DOI] [PubMed] [Google Scholar]
  18. Ischiropoulos H., Zhu L., Chen J., Tsai M., Martin J. C., Smith C. D., Beckman J. S. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys. 1992 Nov 1;298(2):431–437. doi: 10.1016/0003-9861(92)90431-u. [DOI] [PubMed] [Google Scholar]
  19. Iuvone T., Carnuccio R., Di Rosa M. Modulation of granuloma formation by endogenous nitric oxide. Eur J Pharmacol. 1994 Nov 14;265(1-2):89–92. doi: 10.1016/0014-2999(94)90227-5. [DOI] [PubMed] [Google Scholar]
  20. Jenkins D. C., Charles I. G., Thomsen L. L., Moss D. W., Holmes L. S., Baylis S. A., Rhodes P., Westmore K., Emson P. C., Moncada S. Roles of nitric oxide in tumor growth. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4392–4396. doi: 10.1073/pnas.92.10.4392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jones M. L., Warren J. S. Monocyte chemoattractant protein 1 in a rat model of pulmonary granulomatosis. Lab Invest. 1992 Apr;66(4):498–503. [PubMed] [Google Scholar]
  22. Kasahara K., Kobayashi K., Shikama Y., Yoneya I., Soezima K., Ide H., Takahashi T. Direct evidence for granuloma-inducing activity of interleukin-1. Induction of experimental pulmonary granuloma formation in mice by interleukin-1-coupled beads. Am J Pathol. 1988 Mar;130(3):629–638. [PMC free article] [PubMed] [Google Scholar]
  23. Koppenol W. H., Moreno J. J., Pryor W. A., Ischiropoulos H., Beckman J. S. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol. 1992 Nov-Dec;5(6):834–842. doi: 10.1021/tx00030a017. [DOI] [PubMed] [Google Scholar]
  24. Kubes P. Nitric oxide-induced microvascular permeability alterations: a regulatory role for cGMP. Am J Physiol. 1993 Dec;265(6 Pt 2):H1909–H1915. doi: 10.1152/ajpheart.1993.265.6.H1909. [DOI] [PubMed] [Google Scholar]
  25. Kume S., Takeya M., Mori T., Araki N., Suzuki H., Horiuchi S., Kodama T., Miyauchi Y., Takahashi K. Immunohistochemical and ultrastructural detection of advanced glycation end products in atherosclerotic lesions of human aorta with a novel specific monoclonal antibody. Am J Pathol. 1995 Sep;147(3):654–667. [PMC free article] [PubMed] [Google Scholar]
  26. Kuo H. P., Liu S., Barnes P. J. The effect of endogenous nitric oxide on neurogenic plasma exudation in guinea-pig airways. Eur J Pharmacol. 1992 Oct 20;221(2-3):385–388. doi: 10.1016/0014-2999(92)90728-m. [DOI] [PubMed] [Google Scholar]
  27. Lugano E. M., Dauber J. H., Daniele R. P. Acute experimental silicosis. Lung morphology, histology, and macrophage chemotaxin secretion. Am J Pathol. 1982 Oct;109(1):27–36. [PMC free article] [PubMed] [Google Scholar]
  28. Lukacs N. W., Kunkel S. L., Strieter R. M., Warmington K., Chensue S. W. The role of macrophage inflammatory protein 1 alpha in Schistosoma mansoni egg-induced granulomatous inflammation. J Exp Med. 1993 Jun 1;177(6):1551–1559. doi: 10.1084/jem.177.6.1551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Maeda H., Noguchi Y., Sato K., Akaike T. Enhanced vascular permeability in solid tumor is mediated by nitric oxide and inhibited by both new nitric oxide scavenger and nitric oxide synthase inhibitor. Jpn J Cancer Res. 1994 Apr;85(4):331–334. doi: 10.1111/j.1349-7006.1994.tb02362.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
  31. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
  32. Nussler A. K., Billiar T. R. Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol. 1993 Aug;54(2):171–178. [PubMed] [Google Scholar]
  33. Orrell J. M., Brett S. J., Ivanyi J., Coghill G., Grant A., Beck J. S. Morphometric analysis of Mycobacterium tuberculosis infection in mice suggests a genetic influence on the generation of the granulomatous inflammatory response. J Pathol. 1992 Jan;166(1):77–82. doi: 10.1002/path.1711660112. [DOI] [PubMed] [Google Scholar]
  34. Reiser K. M., Hesterberg T. W., Haschek W. M., Last J. A. Experimental silicosis. I. Acute effects of intratracheally instilled quartz on collagen metabolism and morphologic characteristics of rat lungs. Am J Pathol. 1982 May;107(2):176–185. [PMC free article] [PubMed] [Google Scholar]
  35. Robinson A. P., White T. M., Mason D. W. Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRC OX-41 and MRC OX-42, the latter recognizing complement receptor type 3. Immunology. 1986 Feb;57(2):239–247. [PMC free article] [PubMed] [Google Scholar]
  36. Sakanashi Y., Takeya M., Yoshimura T., Feng L., Morioka T., Takahashi K. Kinetics of macrophage subpopulations and expression of monocyte chemoattractant protein-1 (MCP-1) in bleomycin-induced lung injury of rats studied by a novel monoclonal antibody against rat MCP-1. J Leukoc Biol. 1994 Dec;56(6):741–750. doi: 10.1002/jlb.56.6.741. [DOI] [PubMed] [Google Scholar]
  37. Sato K., Miyakawa K., Takeya M., Hattori R., Yui Y., Sunamoto M., Ichimori Y., Ushio Y., Takahashi K. Immunohistochemical expression of inducible nitric oxide synthase (iNOS) in reversible endotoxic shock studied by a novel monoclonal antibody against rat iNOS. J Leukoc Biol. 1995 Jan;57(1):36–44. [PubMed] [Google Scholar]
  38. Shellito J., Sniezek M. Altered release of eicosanoids by rat alveolar macrophages during granulomatous pulmonary inflammation. Am J Respir Cell Mol Biol. 1990 Mar;2(3):289–296. doi: 10.1165/ajrcmb/2.3.289. [DOI] [PubMed] [Google Scholar]
  39. Stuehr D. J., Griffith O. W. Mammalian nitric oxide synthases. Adv Enzymol Relat Areas Mol Biol. 1992;65:287–346. doi: 10.1002/9780470123119.ch8. [DOI] [PubMed] [Google Scholar]
  40. Szabó C., Southan G. J., Thiemermann C. Beneficial effects and improved survival in rodent models of septic shock with S-methylisothiourea sulfate, a potent and selective inhibitor of inducible nitric oxide synthase. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12472–12476. doi: 10.1073/pnas.91.26.12472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Takeya M., Hsiao L., Takahashi K. A new monoclonal antibody, TRPM-3, binds specifically to certain rat macrophage populations: immunohistochemical and immunoelectron microscopic analysis. J Leukoc Biol. 1987 Mar;41(3):187–195. doi: 10.1002/jlb.41.3.187. [DOI] [PubMed] [Google Scholar]
  42. Tsuji M., Dimov V. B., Yoshida T. In vivo expression of monokine and inducible nitric oxide synthase in experimentally induced pulmonary granulomatous inflammation. Evidence for sequential production of interleukin-1, inducible nitric oxide synthase, and tumor necrosis factor. Am J Pathol. 1995 Oct;147(4):1001–1015. [PMC free article] [PubMed] [Google Scholar]
  43. Vallyathan V., Shi X. L., Dalal N. S., Irr W., Castranova V. Generation of free radicals from freshly fractured silica dust. Potential role in acute silica-induced lung injury. Am Rev Respir Dis. 1988 Nov;138(5):1213–1219. doi: 10.1164/ajrccm/138.5.1213. [DOI] [PubMed] [Google Scholar]
  44. Wizemann T. M., Gardner C. R., Laskin J. D., Quinones S., Durham S. K., Goller N. L., Ohnishi S. T., Laskin D. L. Production of nitric oxide and peroxynitrite in the lung during acute endotoxemia. J Leukoc Biol. 1994 Dec;56(6):759–768. doi: 10.1002/jlb.56.6.759. [DOI] [PubMed] [Google Scholar]
  45. Yamashiro S., Takeya M., Nishi T., Kuratsu J., Yoshimura T., Ushio Y., Takahashi K. Tumor-derived monocyte chemoattractant protein-1 induces intratumoral infiltration of monocyte-derived macrophage subpopulation in transplanted rat tumors. Am J Pathol. 1994 Oct;145(4):856–867. [PMC free article] [PubMed] [Google Scholar]
  46. Yoshida M., Akaike T., Wada Y., Sato K., Ikeda K., Ueda S., Maeda H. Therapeutic effects of imidazolineoxyl N-oxide against endotoxin shock through its direct nitric oxide-scavenging activity. Biochem Biophys Res Commun. 1994 Jul 29;202(2):923–930. doi: 10.1006/bbrc.1994.2018. [DOI] [PubMed] [Google Scholar]
  47. Ziche M., Morbidelli L., Masini E., Amerini S., Granger H. J., Maggi C. A., Geppetti P., Ledda F. Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest. 1994 Nov;94(5):2036–2044. doi: 10.1172/JCI117557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zweier J. L., Wang P., Samouilov A., Kuppusamy P. Enzyme-independent formation of nitric oxide in biological tissues. Nat Med. 1995 Aug;1(8):804–809. doi: 10.1038/nm0895-804. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES