Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1974 Oct;28(4):572–578. doi: 10.1128/am.28.4.572-578.1974

Sorption of Heterotrophic and Enteric Bacteria to Glass Surfaces in the Continuous Culture of River Water

Charles W Hendricks 1,1
PMCID: PMC186774  PMID: 4424694

Abstract

A natural population of heterotrophic bacteria, including enterics, was observed to sorb to glass surfaces and multiply during the continuous culture of river water. An initial rate of attachment equivalent to a doubling time of about 2 h was observed with a corresponding increase in the suspended population. After 24 h both the sorbed and suspended populations stabilized with a mass doubling time approximating 100 h at a dilution rate of 0.012/h. On the basis of respiration and degradative enzymatic data, the sorbed microorganisms appeared to be somewhat more metabolically active than the organisms in suspension.

Full text

PDF
574

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOYD W. L., BOYD J. W. Viability of thermophiles and coliform bacteria in arctic soils and water. Can J Microbiol. 1962 Apr;8:189–192. doi: 10.1139/m62-024. [DOI] [PubMed] [Google Scholar]
  2. Baier R. E., Shafrin E. G., Zisman W. A. Adhesion: mechanisms that assist or impede it. Science. 1968 Dec 20;162(3860):1360–1368. doi: 10.1126/science.162.3860.1360. [DOI] [PubMed] [Google Scholar]
  3. Brock T. D. Microbial growth rates in nature. Bacteriol Rev. 1971 Mar;35(1):39–58. doi: 10.1128/br.35.1.39-58.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CRAVEN G. R., STEERS E., Jr, ANFINSEN C. B. PURIFICATION, COMPOSITION, AND MOLECULAR WEIGHT OF THE BETA-GALACTOSIDASE OF ESCHERICHIA COLI K12. J Biol Chem. 1965 Jun;240:2468–2477. [PubMed] [Google Scholar]
  5. Caldwell E. L., Parr L. W. Present Status of Handling Water Samples : Comparison of Bacteriological Analyses Under Varying Temperature and Holding Conditions With Special Reference to the Direct Method. Am J Public Health Nations Health. 1933 May;23(5):467–472. doi: 10.2105/ajph.23.5.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fitzgerald J. W., Milazzo F. H. Arylsulfatase multiplicity in Proteus rettgeri. Can J Microbiol. 1970 Nov;16(11):1109–1115. doi: 10.1139/m70-186. [DOI] [PubMed] [Google Scholar]
  7. HERBERT D., ELSWORTH R., TELLING R. C. The continuous culture of bacteria; a theoretical and experimental study. J Gen Microbiol. 1956 Jul;14(3):601–622. doi: 10.1099/00221287-14-3-601. [DOI] [PubMed] [Google Scholar]
  8. Hendricks C. W. Enteric bacterial growth rates in river water. Appl Microbiol. 1972 Aug;24(2):168–174. doi: 10.1128/am.24.2.168-174.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hendricks C. W. Enteric bacterial metabolism of stream sediment eluates. Can J Microbiol. 1971 Apr;17(4):551–556. doi: 10.1139/m71-090. [DOI] [PubMed] [Google Scholar]
  10. Horne M. T. Coevolution of Escherichia coli and bacteriophages in chemostat culture. Science. 1970 May 22;168(3934):992–993. doi: 10.1126/science.168.3934.992-a. [DOI] [PubMed] [Google Scholar]
  11. Jannasch H. W. Competitive elimination of Enterobacteriaceae from seawater. Appl Microbiol. 1968 Oct;16(10):1616–1618. doi: 10.1128/am.16.10.1616-1618.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jannasch H. W. Estimations of bacterial growth rates in natural waters. J Bacteriol. 1969 Jul;99(1):156–160. doi: 10.1128/jb.99.1.156-160.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LARSEN D. H., DIMMICK R. L. ATTACHMENT AND GROWTH OF BACTERIA ON SURFACES OF CONTINUOUS-CULTURE VESSELS. J Bacteriol. 1964 Nov;88:1380–1387. doi: 10.1128/jb.88.5.1380-1387.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MALANEY G. W., WEISER H. H., TURNER R. O., VAN HORN M. Coliforms, enterococci, thermodurics, thermophiles, and psychrophiles in untreated farm pond waters. Appl Microbiol. 1962 Jan;10:44–51. doi: 10.1128/am.10.1.44-51.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marshall K. C., Stout R., Mitchell R. Selective sorption of bacteria from seawater. Can J Microbiol. 1971 Nov;17(11):1413–1416. doi: 10.1139/m71-225. [DOI] [PubMed] [Google Scholar]
  16. Milazzo F. H., Fitzgerald J. W. A study of arylsulfatase activity in Proteus rettgeri. Can J Microbiol. 1966 Aug;12(4):735–744. doi: 10.1139/m66-100. [DOI] [PubMed] [Google Scholar]
  17. Morris D. L. Quantitative Determination of Carbohydrates With Dreywood's Anthrone Reagent. Science. 1948 Mar 5;107(2775):254–255. doi: 10.1126/science.107.2775.254. [DOI] [PubMed] [Google Scholar]
  18. NOVICK A. Growth of bacteria. Annu Rev Microbiol. 1955;9:97–110. doi: 10.1146/annurev.mi.09.100155.000525. [DOI] [PubMed] [Google Scholar]
  19. Sanders W. M., 3rd Oxygen utilization by slime organisms in continuous culture. Air Water Pollut. 1966 Apr;10(4):253–276. [PubMed] [Google Scholar]
  20. Sinclair C. G., Brown D. E. Effect of incomplete mixing on the analysis of the static behaviour of continuous cultures. Biotechnol Bioeng. 1970 Nov;12(6):1001–1017. doi: 10.1002/bit.260120610. [DOI] [PubMed] [Google Scholar]
  21. TORRIANI A. Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta. 1960 Mar 11;38:460–469. doi: 10.1016/0006-3002(60)91281-6. [DOI] [PubMed] [Google Scholar]
  22. Zobell C. E. The Effect of Solid Surfaces upon Bacterial Activity. J Bacteriol. 1943 Jul;46(1):39–56. doi: 10.1128/jb.46.1.39-56.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES