Skip to main content
Gut logoLink to Gut
. 2004 Mar;53(Suppl 2):ii13–ii15. doi: 10.1136/gut.2003.033431

Sensitisation of gastrointestinal tract afferents

S McMahon
PMCID: PMC1867771  PMID: 14960552

Abstract

Sensory innervation of the viscera serves a number of important functions, including regulation of visceral motility and secretory activity, and transmission of visceral sensations, including pain. There are many ways in which the sensitivity of visceral sensory neurones might be modulated, and these are discussed. Altered sensory neurone responsiveness may contribute to pathophysiological states such as irritable bowel syndrome, and the mechanisms leading to sensory neurone sensitisation offer novel targets for the treatment of such disorders.

Full Text

The Full Text of this article is available as a PDF (197.5 KB).

Figure 1 .

Figure 1

Modulation of primary sensory neurone sensitivity. (A) A list (on the left) of many of the stimuli which can lead to sensory neurone sensitisation. (B) Illustration of the second messenger cascades by which sensitising stimuli induce their local effects. (C) Illustration of the main effector mechanisms by which altered sensory neurone responsiveness is achieved.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aley K. O., Levine J. D. Role of protein kinase A in the maintenance of inflammatory pain. J Neurosci. 1999 Mar 15;19(6):2181–2186. doi: 10.1523/JNEUROSCI.19-06-02181.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aley K. O., Martin A., McMahon T., Mok J., Levine J. D., Messing R. O. Nociceptor sensitization by extracellular signal-regulated kinases. J Neurosci. 2001 Sep 1;21(17):6933–6939. doi: 10.1523/JNEUROSCI.21-17-06933.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aloe L., Tuveri M. A., Levi-Montalcini R. Studies on carrageenan-induced arthritis in adult rats: presence of nerve growth factor and role of sympathetic innervation. Rheumatol Int. 1992;12(5):213–216. doi: 10.1007/BF00302155. [DOI] [PubMed] [Google Scholar]
  4. Cesare P., Dekker L. V., Sardini A., Parker P. J., McNaughton P. A. Specific involvement of PKC-epsilon in sensitization of the neuronal response to painful heat. Neuron. 1999 Jul;23(3):617–624. doi: 10.1016/s0896-6273(00)80813-2. [DOI] [PubMed] [Google Scholar]
  5. Cesare P., McNaughton P. A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15435–15439. doi: 10.1073/pnas.93.26.15435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen C., Bobbin R. P. P2X receptors in cochlear Deiters' cells. Br J Pharmacol. 1998 May;124(2):337–344. doi: 10.1038/sj.bjp.0701848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chuang H. H., Prescott E. D., Kong H., Shields S., Jordt S. E., Basbaum A. I., Chao M. V., Julius D. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature. 2001 Jun 21;411(6840):957–962. doi: 10.1038/35082088. [DOI] [PubMed] [Google Scholar]
  8. Dai Yi, Iwata Koichi, Fukuoka Tetsuo, Kondo Eiji, Tokunaga Atsushi, Yamanaka Hiroki, Tachibana Toshiya, Liu Yi, Noguchi Koichi. Phosphorylation of extracellular signal-regulated kinase in primary afferent neurons by noxious stimuli and its involvement in peripheral sensitization. J Neurosci. 2002 Sep 1;22(17):7737–7745. doi: 10.1523/JNEUROSCI.22-17-07737.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dmitrieva N., McMahon S. B. Sensitisation of visceral afferents by nerve growth factor in the adult rat. Pain. 1996 Jul;66(1):87–97. doi: 10.1016/0304-3959(96)02993-4. [DOI] [PubMed] [Google Scholar]
  10. Donnerer J., Schuligoi R., Stein C. Increased content and transport of substance P and calcitonin gene-related peptide in sensory nerves innervating inflamed tissue: evidence for a regulatory function of nerve growth factor in vivo. Neuroscience. 1992 Aug;49(3):693–698. doi: 10.1016/0306-4522(92)90237-v. [DOI] [PubMed] [Google Scholar]
  11. England S., Bevan S., Docherty R. J. PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade. J Physiol. 1996 Sep 1;495(Pt 2):429–440. doi: 10.1113/jphysiol.1996.sp021604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gold M. S., Reichling D. B., Shuster M. J., Levine J. D. Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1108–1112. doi: 10.1073/pnas.93.3.1108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hamilton S. G., McMahon S. B. ATP as a peripheral mediator of pain. J Auton Nerv Syst. 2000 Jul 3;81(1-3):187–194. doi: 10.1016/s0165-1838(00)00137-5. [DOI] [PubMed] [Google Scholar]
  14. Kendall G., Brar-Rai A., Ensor E., Winter J., Wood J. N., Latchman D. S. Nerve growth factor induces the Oct-2 transcription factor in sensory neurons with the kinetics of an immediate-early gene. J Neurosci Res. 1995 Feb 1;40(2):169–176. doi: 10.1002/jnr.490400205. [DOI] [PubMed] [Google Scholar]
  15. Khasar S. G., McCarter G., Levine J. D. Epinephrine produces a beta-adrenergic receptor-mediated mechanical hyperalgesia and in vitro sensitization of rat nociceptors. J Neurophysiol. 1999 Mar;81(3):1104–1112. doi: 10.1152/jn.1999.81.3.1104. [DOI] [PubMed] [Google Scholar]
  16. Liang Y. F., Haake B., Reeh P. W. Sustained sensitization and recruitment of rat cutaneous nociceptors by bradykinin and a novel theory of its excitatory action. J Physiol. 2001 Apr 1;532(Pt 1):229–239. doi: 10.1111/j.1469-7793.2001.0229g.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lowe E. M., Anand P., Terenghi G., Williams-Chestnut R. E., Sinicropi D. V., Osborne J. L. Increased nerve growth factor levels in the urinary bladder of women with idiopathic sensory urgency and interstitial cystitis. Br J Urol. 1997 Apr;79(4):572–577. doi: 10.1046/j.1464-410x.1997.00097.x. [DOI] [PubMed] [Google Scholar]
  18. Oddiah D., Anand P., McMahon S. B., Rattray M. Rapid increase of NGF, BDNF and NT-3 mRNAs in inflamed bladder. Neuroreport. 1998 May 11;9(7):1455–1458. doi: 10.1097/00001756-199805110-00038. [DOI] [PubMed] [Google Scholar]
  19. Ogun-Muyiwa P., Helliwell R., McIntyre P., Winter J. Glial cell line derived neurotrophic factor (GDNF) regulates VR1 and substance P in cultured sensory neurons. Neuroreport. 1999 Jul 13;10(10):2107–2111. doi: 10.1097/00001756-199907130-00021. [DOI] [PubMed] [Google Scholar]
  20. Oh S. B., Tran P. B., Gillard S. E., Hurley R. W., Hammond D. L., Miller R. J. Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J Neurosci. 2001 Jul 15;21(14):5027–5035. doi: 10.1523/JNEUROSCI.21-14-05027.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Poo M. M. Neurotrophins as synaptic modulators. Nat Rev Neurosci. 2001 Jan;2(1):24–32. doi: 10.1038/35049004. [DOI] [PubMed] [Google Scholar]
  22. Safieh-Garabedian B., Poole S., Allchorne A., Winter J., Woolf C. J. Contribution of interleukin-1 beta to the inflammation-induced increase in nerve growth factor levels and inflammatory hyperalgesia. Br J Pharmacol. 1995 Aug;115(7):1265–1275. doi: 10.1111/j.1476-5381.1995.tb15035.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shu X. Q., Mendell L. M. Neurotrophins and hyperalgesia. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7693–7696. doi: 10.1073/pnas.96.14.7693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shu X., Mendell L. M. Acute sensitization by NGF of the response of small-diameter sensory neurons to capsaicin. J Neurophysiol. 2001 Dec;86(6):2931–2938. doi: 10.1152/jn.2001.86.6.2931. [DOI] [PubMed] [Google Scholar]
  25. Stucky C. L., Koltzenburg M., Schneider M., Engle M. G., Albers K. M., Davis B. M. Overexpression of nerve growth factor in skin selectively affects the survival and functional properties of nociceptors. J Neurosci. 1999 Oct 1;19(19):8509–8516. doi: 10.1523/JNEUROSCI.19-19-08509.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tominaga M., Wada M., Masu M. Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci U S A. 2001 May 22;98(12):6951–6956. doi: 10.1073/pnas.111025298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vellani V., Mapplebeck S., Moriondo A., Davis J. B., McNaughton P. A. Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J Physiol. 2001 Aug 1;534(Pt 3):813–825. doi: 10.1111/j.1469-7793.2001.00813.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weskamp G., Otten U. An enzyme-linked immunoassay for nerve growth factor (NGF): a tool for studying regulatory mechanisms involved in NGF production in brain and in peripheral tissues. J Neurochem. 1987 Jun;48(6):1779–1786. doi: 10.1111/j.1471-4159.1987.tb05736.x. [DOI] [PubMed] [Google Scholar]
  29. Woolf C. J., Safieh-Garabedian B., Ma Q. P., Crilly P., Winter J. Nerve growth factor contributes to the generation of inflammatory sensory hypersensitivity. Neuroscience. 1994 Sep;62(2):327–331. doi: 10.1016/0306-4522(94)90366-2. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES