Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1995 Feb;146(2):357–367.

Localization of superoxide dismutases in Alzheimer's disease and Down's syndrome neocortex and hippocampus.

A Furuta 1, D L Price 1, C A Pardo 1, J C Troncoso 1, Z S Xu 1, N Taniguchi 1, L J Martin 1
PMCID: PMC1869844  PMID: 7856748

Abstract

Abnormalities in the cellular regulation and expression of antioxidant enzymes may have a role in mechanisms of central nervous system aging and neurodegeneration. We therefore examined, using isozyme-specific antibodies and immunohistochemistry, the localization of copper, zinc-superoxide dismutase and manganese-superoxide dismutase in the frontal and temporal neocortices and hippocampi of aged controls and individuals with Alzheimer's disease or Down's syndrome. Two different antibodies to copper, zinc-superoxide dismutase and one antibody to manganese-superoxide dismutase were evaluated by immunoblotting of homogenates of human brain before use in immunohistochemistry. The copper, zinc-superoxide dismutase antibodies recognized a single band of proteins at 16 kd. The manganese-superoxide dismutase antibody detected a single band of proteins at 25 kd. Immunohistochemically, copper, zinc-superoxide dismutase and manganese-superoxide dismutase immunoreactivities were localized predominantly to neocortical and hippocampal pyramidal neurons and scarcely seen in glial cells in controls. In Alzheimer's disease and Down's syndrome, the distributions and intensities of these two forms of superoxide dismutase immunoreactivities were different as compared with controls. Copper, zinc-superoxide dismutase was enriched in pyramidal neurons undergoing degeneration, whereas manganese-superoxide dismutase was more enriched in reactive astrocytes than in neurons. In senile plaques, copper, zinc-superoxide dismutase-positive globular structures were surrounded by astrocytes highly enriched in manganese-superoxide dismutase. By double label immunohistochemistry, some pyramidal neurons coexpressed superoxide dismutases and tau, and a few copper, zinc-superoxide dismutase-positive structures in senile plaques colocalized with tau. Amyloid cores, diffuse plaques, and microglia scarcely showed colocalization with superoxide dismutase-positive structures. The observed changes in the cellular localization of superoxide dismutases in neocortex and hippocampus in cases of Alzheimer's disease and Down's syndrome support a role for oxidative injury in neuronal degeneration and senile plaque formation. The differential localization of copper, zinc-superoxide dismutase and manganese-superoxide dismutase in cerebral sites of degeneration suggests that cellular responses to oxidative stress is antioxidant enzyme specific and cell type specific and that these two forms of superoxide dismutase may have different functions in antioxidant mechanisms.

Full text

PDF
357

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binder L. I., Frankfurter A., Rebhun L. I. The distribution of tau in the mammalian central nervous system. J Cell Biol. 1985 Oct;101(4):1371–1378. doi: 10.1083/jcb.101.4.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brooksbank B. W., Balazs R. Superoxide dismutase, glutathione peroxidase and lipoperoxidation in Down's syndrome fetal brain. Brain Res. 1984 Sep;318(1):37–44. doi: 10.1016/0165-3806(84)90060-9. [DOI] [PubMed] [Google Scholar]
  3. Brooksbank B. W., Balázs R. Superoxide dismutase and lipoperoxidation in Down's syndrome fetal brain. Lancet. 1983 Apr 16;1(8329):881–882. doi: 10.1016/s0140-6736(83)91427-7. [DOI] [PubMed] [Google Scholar]
  4. Ceballos I., Javoy-Agid F., Delacourte A., Defossez A., Lafon M., Hirsch E., Nicole A., Sinet P. M., Agid Y. Neuronal localization of copper-zinc superoxide dismutase protein and mRNA within the human hippocampus from control and Alzheimer's disease brains. Free Radic Res Commun. 1991;12-13 Pt 2:571–580. doi: 10.3109/10715769109145832. [DOI] [PubMed] [Google Scholar]
  5. Ceballos I., Javoy-Agid F., Hirsch E. C., Dumas S., Kamoun P. P., Sinet P. M., Agid Y. Localization of copper-zinc superoxide dismutase mRNA in human hippocampus by in situ hybridization. Neurosci Lett. 1989 Oct 23;105(1-2):41–46. doi: 10.1016/0304-3940(89)90008-6. [DOI] [PubMed] [Google Scholar]
  6. Colton C. A., Gilbert D. L. Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett. 1987 Nov 2;223(2):284–288. doi: 10.1016/0014-5793(87)80305-8. [DOI] [PubMed] [Google Scholar]
  7. Delacourte A., Defossez A., Ceballos I., Nicole A., Sinet P. M. Preferential localization of copper zinc superoxide dismutase in the vulnerable cortical neurons in Alzheimer's disease. Neurosci Lett. 1988 Oct 17;92(3):247–253. doi: 10.1016/0304-3940(88)90597-6. [DOI] [PubMed] [Google Scholar]
  8. Deng H. X., Hentati A., Tainer J. A., Iqbal Z., Cayabyab A., Hung W. Y., Getzoff E. D., Hu P., Herzfeldt B., Roos R. P. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science. 1993 Aug 20;261(5124):1047–1051. doi: 10.1126/science.8351519. [DOI] [PubMed] [Google Scholar]
  9. Deutsch H. F., Hoshi S., Matsuda Y., Suzuki K., Kawano K., Kitagawa Y., Katsube Y., Taniguchi N. Preparation of human manganese superoxide dismutase by tri-phase partitioning and preliminary crystallographic data. J Mol Biol. 1991 May 5;219(1):103–108. doi: 10.1016/0022-2836(91)90860-9. [DOI] [PubMed] [Google Scholar]
  10. Dovrat A., Gershon D. Rat lens superoxide dismutase and glucose-6-phosphate dehydrogenase: studies on the catalytic activity and the fate of enzyme antigen as a function of age. Exp Eye Res. 1981 Dec;33(6):651–661. doi: 10.1016/s0014-4835(81)80105-4. [DOI] [PubMed] [Google Scholar]
  11. Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem. 1992 Nov;59(5):1609–1623. doi: 10.1111/j.1471-4159.1992.tb10990.x. [DOI] [PubMed] [Google Scholar]
  12. Harman D. The aging process. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7124–7128. doi: 10.1073/pnas.78.11.7124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hartz J. W., Deutsch H. F. Subunit structure of human superoxide dismutase. J Biol Chem. 1972 Nov 10;247(21):7043–7050. [PubMed] [Google Scholar]
  14. Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
  15. Hsu S. M., Soban E. Color modification of diaminobenzidine (DAB) precipitation by metallic ions and its application for double immunohistochemistry. J Histochem Cytochem. 1982 Oct;30(10):1079–1082. doi: 10.1177/30.10.6182185. [DOI] [PubMed] [Google Scholar]
  16. Hulette C. M., Downey B. T., Burger P. C. Macrophage markers in diagnostic neuropathology. Am J Surg Pathol. 1992 May;16(5):493–499. doi: 10.1097/00000478-199205000-00008. [DOI] [PubMed] [Google Scholar]
  17. Hyman B. T., Tanzi R. E., Marzloff K., Barbour R., Schenk D. Kunitz protease inhibitor-containing amyloid beta protein precursor immunoreactivity in Alzheimer's disease. J Neuropathol Exp Neurol. 1992 Jan;51(1):76–83. doi: 10.1097/00005072-199201000-00009. [DOI] [PubMed] [Google Scholar]
  18. Ishikawa M., Yaginuma Y., Hayashi H., Shimizu T., Endo Y., Taniguchi N. Reactivity of a monoclonal antibody to manganese superoxide dismutase with human ovarian carcinoma. Cancer Res. 1990 Apr 15;50(8):2538–2542. [PubMed] [Google Scholar]
  19. Jahn R., Schiebler W., Ouimet C., Greengard P. A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4137–4141. doi: 10.1073/pnas.82.12.4137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lakos S., Basbaum A. I. Benzidine dihydrochloride as a chromogen for single- and double-label light and electron microscopic immunocytochemical studies. J Histochem Cytochem. 1986 Aug;34(8):1047–1056. doi: 10.1177/34.8.2426333. [DOI] [PubMed] [Google Scholar]
  21. Levey A. I., Bolam J. P., Rye D. B., Hallanger A. E., Demuth R. M., Mesulam M. M., Wainer B. H. A light and electron microscopic procedure for sequential double antigen localization using diaminobenzidine and benzidine dihydrochloride. J Histochem Cytochem. 1986 Nov;34(11):1449–1457. doi: 10.1177/34.11.2430010. [DOI] [PubMed] [Google Scholar]
  22. Liu X. H., Kato H., Nakata N., Kogure K., Kato K. An immunohistochemical study of copper/zinc superoxide dismutase and manganese superoxide dismutase in rat hippocampus after transient cerebral ischemia. Brain Res. 1993 Oct 15;625(1):29–37. doi: 10.1016/0006-8993(93)90134-9. [DOI] [PubMed] [Google Scholar]
  23. Marklund S. L. Human copper-containing superoxide dismutase of high molecular weight. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7634–7638. doi: 10.1073/pnas.79.24.7634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Masuda A., Longo D. L., Kobayashi Y., Appella E., Oppenheim J. J., Matsushima K. Induction of mitochondrial manganese superoxide dismutase by interleukin 1. FASEB J. 1988 Dec;2(15):3087–3091. doi: 10.1096/fasebj.2.15.3263930. [DOI] [PubMed] [Google Scholar]
  25. Matsuda Y., Higashiyama S., Kijima Y., Suzuki K., Kawano K., Akiyama M., Kawata S., Tarui S., Deutsch H. F., Taniguchi N. Human liver manganese superoxide dismutase. Purification and crystallization, subunit association and sulfhydryl reactivity. Eur J Biochem. 1990 Dec 27;194(3):713–720. doi: 10.1111/j.1432-1033.1990.tb19461.x. [DOI] [PubMed] [Google Scholar]
  26. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  27. McGeer P. L., Itagaki S., McGeer E. G. Expression of the histocompatibility glycoprotein HLA-DR in neurological disease. Acta Neuropathol. 1988;76(6):550–557. doi: 10.1007/BF00689592. [DOI] [PubMed] [Google Scholar]
  28. Mirra S. S., Hart M. N., Terry R. D. Making the diagnosis of Alzheimer's disease. A primer for practicing pathologists. Arch Pathol Lab Med. 1993 Feb;117(2):132–144. [PubMed] [Google Scholar]
  29. Nakane P. K. Simultaneous localization of multiple tissue antigens using the peroxidase-labeled antibody method: a study on pituitary glands of the rat. J Histochem Cytochem. 1968 Sep;16(9):557–560. doi: 10.1177/16.9.557. [DOI] [PubMed] [Google Scholar]
  30. Oberley L. W., Buettner G. R. Role of superoxide dismutase in cancer: a review. Cancer Res. 1979 Apr;39(4):1141–1149. [PubMed] [Google Scholar]
  31. Olanow C. W. A radical hypothesis for neurodegeneration. Trends Neurosci. 1993 Nov;16(11):439–444. doi: 10.1016/0166-2236(93)90070-3. [DOI] [PubMed] [Google Scholar]
  32. Papasozomenos S. C., Binder L. I. Phosphorylation determines two distinct species of Tau in the central nervous system. Cell Motil Cytoskeleton. 1987;8(3):210–226. doi: 10.1002/cm.970080303. [DOI] [PubMed] [Google Scholar]
  33. Pappolla M. A., Omar R. A., Kim K. S., Robakis N. K. Immunohistochemical evidence of oxidative [corrected] stress in Alzheimer's disease. Am J Pathol. 1992 Mar;140(3):621–628. [PMC free article] [PubMed] [Google Scholar]
  34. Rosen D. R., Siddique T., Patterson D., Figlewicz D. A., Sapp P., Hentati A., Donaldson D., Goto J., O'Regan J. P., Deng H. X. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993 Mar 4;362(6415):59–62. doi: 10.1038/362059a0. [DOI] [PubMed] [Google Scholar]
  35. Sawada M., Kondo N., Suzumura A., Marunouchi T. Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res. 1989 Jul 10;491(2):394–397. doi: 10.1016/0006-8993(89)90078-4. [DOI] [PubMed] [Google Scholar]
  36. Sharonov B. P., Churilova I. V. Inactivation and oxidative modification of Cu,Zn superoxide dismutase by stimulated neutrophils: the appearance of new catalytically active structures. Biochem Biophys Res Commun. 1992 Dec 15;189(2):1129–1135. doi: 10.1016/0006-291x(92)92321-n. [DOI] [PubMed] [Google Scholar]
  37. Shi S. R., Key M. E., Kalra K. L. Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. J Histochem Cytochem. 1991 Jun;39(6):741–748. doi: 10.1177/39.6.1709656. [DOI] [PubMed] [Google Scholar]
  38. Somerville M. J., Percy M. E., Bergeron C., Yoong L. K., Grima E. A., McLachlan D. R. Localization and quantitation of 68 kDa neurofilament and superoxide dismutase-1 mRNA in Alzheimer brains. Brain Res Mol Brain Res. 1991 Jan;9(1-2):1–8. doi: 10.1016/0169-328x(91)90123-f. [DOI] [PubMed] [Google Scholar]
  39. St Clair D. K., Oberley T. D., Muse K. E., St Clair W. H. Expression of manganese superoxide dismutase promotes cellular differentiation. Free Radic Biol Med. 1994 Feb;16(2):275–282. doi: 10.1016/0891-5849(94)90153-8. [DOI] [PubMed] [Google Scholar]
  40. Tan Y. H., Tischfield J., Ruddle F. H. The linkage of genes for the human interferon-induced antiviral protein and indophenol oxidase-B traits to chromosome G-21. J Exp Med. 1973 Feb 1;137(2):317–330. doi: 10.1084/jem.137.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Weisiger R. A., Fridovich I. Superoxide dismutase. Organelle specificity. J Biol Chem. 1973 May 25;248(10):3582–3592. [PubMed] [Google Scholar]
  43. Wiedenmann B., Franke W. W. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell. 1985 Jul;41(3):1017–1028. doi: 10.1016/s0092-8674(85)80082-9. [DOI] [PubMed] [Google Scholar]
  44. Wolozin B. L., Pruchnicki A., Dickson D. W., Davies P. A neuronal antigen in the brains of Alzheimer patients. Science. 1986 May 2;232(4750):648–650. doi: 10.1126/science.3083509. [DOI] [PubMed] [Google Scholar]
  45. Wong G. H., Goeddel D. V. Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science. 1988 Nov 11;242(4880):941–944. doi: 10.1126/science.3263703. [DOI] [PubMed] [Google Scholar]
  46. Yamamoto T., Hirano A. A comparative study of modified Bielschowsky, Bodian and thioflavin S stains on Alzheimer's neurofibrillary tangles. Neuropathol Appl Neurobiol. 1986 Jan-Feb;12(1):3–9. doi: 10.1111/j.1365-2990.1986.tb00677.x. [DOI] [PubMed] [Google Scholar]
  47. Yoneda T., Inagaki S., Hayashi Y., Nomura T., Takagi H. Differential regulation of manganese and copper/zinc superoxide dismutases by the facial nerve transection. Brain Res. 1992 Jun 12;582(2):342–345. doi: 10.1016/0006-8993(92)90153-z. [DOI] [PubMed] [Google Scholar]
  48. Zemlan F. P., Thienhaus O. J., Bosmann H. B. Superoxide dismutase activity in Alzheimer's disease: possible mechanism for paired helical filament formation. Brain Res. 1989 Jan 2;476(1):160–162. doi: 10.1016/0006-8993(89)91550-3. [DOI] [PubMed] [Google Scholar]
  49. Zhang P., Anglade P., Hirsch E. C., Javoy-Agid F., Agid Y. Distribution of manganese-dependent superoxide dismutase in the human brain. Neuroscience. 1994 Jul;61(2):317–330. doi: 10.1016/0306-4522(94)90234-8. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES