Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1993 May;37(5):980–983. doi: 10.1128/aac.37.5.980

Selective inhibition of the bacterial translocase reaction in peptidoglycan synthesis by mureidomycins.

M Inukai 1, F Isono 1, A Takatsuki 1
PMCID: PMC187869  PMID: 8517724

Abstract

Mureidomycins (MRDs) A and C inhibited strongly the formation of undecaprenyl pyrophosphoryl N-acetylmuramyl-pentapeptide (lipid intermediate I), which is an intermediate in bacterial peptidoglycan synthesis (50% inhibitory concentration [IC50] of MRD A, 0.05 microgram/ml). However, they did not inhibit the formation of dolichyl pyrophosphoryl N-acetylglucosamine (Dol-p-p-GlcNAc), dolichyl phosphoryl glucose, or dolichyl phosphoryl mannose, the precursors for mammalian glycoprotein synthesis, or the formation in Bacillus subtilis of lipid-linked N-acetylglucosamine for teichoic acid synthesis (IC50s, > 100 micrograms/ml). In contrast, tunicamycin (TCM) inhibited strongly the formation of Dol-p-p-GlcNAc (IC50, 0.03 microgram/ml) but inhibited weakly the formation of bacterial lipid intermediate I (IC50, 44 micrograms/ml). When the effects of MRDs A and C and TCM on the growth of mammalian cells were compared, MRDs did not show any toxicity, even at 1,000 micrograms/ml, whereas TCM inhibited the growth of BALB/3T3 cells at 10 micrograms/ml. On the basis of these results, it was concluded that MRDs are the first specific and potent inhibitors of the translocase reaction in bacterial peptidoglycan synthesis, showing a high level of toxicity against bacteria and a low level of toxicity against mammalian cells. A specific inhibitor of translocase could be a potent antibiotic with highly selective toxicity.

Full text

PDF
981

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bodanszky M., Sigler G. F., Bodanszky A. Structure of the peptide antibiotic amphomycin. J Am Chem Soc. 1973 Apr 4;95(7):2352–2357. doi: 10.1021/ja00788a040. [DOI] [PubMed] [Google Scholar]
  2. Hickman S., Kornfeld S. Effect of tunicamycin on IgM, IgA, and IgG secretion by mouse plasmacytoma cells. J Immunol. 1978 Sep;121(3):990–996. [PubMed] [Google Scholar]
  3. Inukai M., Isono F., Takahashi S., Enokita R., Sakaida Y., Haneishi T. Mureidomycins A-D, novel peptidylnucleoside antibiotics with spheroplast forming activity. I. Taxonomy, fermentation, isolation and physico-chemical properties. J Antibiot (Tokyo) 1989 May;42(5):662–666. doi: 10.7164/antibiotics.42.662. [DOI] [PubMed] [Google Scholar]
  4. Isono F., Inukai M. Mureidomycin A, a new inhibitor of bacterial peptidoglycan synthesis. Antimicrob Agents Chemother. 1991 Feb;35(2):234–236. doi: 10.1128/aac.35.2.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Isono F., Inukai M., Takahashi S., Haneishi T., Kinoshita T., Kuwano H. Mureidomycins A-D, novel peptidylnucleoside antibiotics with spheroplast forming activity. II. Structural elucidation. J Antibiot (Tokyo) 1989 May;42(5):667–673. doi: 10.7164/antibiotics.42.667. [DOI] [PubMed] [Google Scholar]
  6. Isono F., Katayama T., Inukai M., Haneishi T. Mureidomycins A-D, novel peptidylnucleoside antibiotics with spheroplast forming activity. III. Biological properties. J Antibiot (Tokyo) 1989 May;42(5):674–679. doi: 10.7164/antibiotics.42.674. [DOI] [PubMed] [Google Scholar]
  7. Isono F., Kodama K., Inukai M. Susceptibility of Pseudomonas species to the novel antibiotics mureidomycins. Antimicrob Agents Chemother. 1992 May;36(5):1024–1027. doi: 10.1128/aac.36.5.1024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kang M. S., Spencer J. P., Elbein A. D. Amphomycin inhibition of mannose and GlcNAc incorporation into lipid-linked saccharides. J Biol Chem. 1978 Dec 25;253(24):8860–8866. [PubMed] [Google Scholar]
  9. Kang M. S., Spencer J. P., Elbein A. D. Amphomycin inhibits the incorporation of mannose and GlcNAc into lipid-linked saccharides by aorta extracts. Biochem Biophys Res Commun. 1978 May 30;82(2):568–574. doi: 10.1016/0006-291x(78)90912-9. [DOI] [PubMed] [Google Scholar]
  10. Oka T. Mode of action of penicillins in vivo and in vitro in Bacillus megaterium. Antimicrob Agents Chemother. 1976 Oct;10(4):579–591. doi: 10.1128/aac.10.4.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Takatsuki A., Arima K., Tamura G. Tunicamycin, a new antibiotic. I. Isolation and characterization of tunicamycin. J Antibiot (Tokyo) 1971 Apr;24(4):215–223. doi: 10.7164/antibiotics.24.215. [DOI] [PubMed] [Google Scholar]
  12. Tanaka H., Oiwa R., Matsukura S., Omura S. Amphomycin inhibits phospho-N-acetylmuramyl-pentapeptide translocase in peptidoglycan synthesis of Bacillus. Biochem Biophys Res Commun. 1979 Feb 14;86(3):902–908. doi: 10.1016/0006-291x(79)91797-2. [DOI] [PubMed] [Google Scholar]
  13. Vosberg H. P., Hoffmann-Berling H. DNA synthesis in nucleotide-permeable Escherichia coli cells. I. Preparation and properties of ether-treated cells. J Mol Biol. 1971 Jun 28;58(3):739–753. doi: 10.1016/0022-2836(71)90037-4. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES