Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1993 Jun;37(6):1264–1269. doi: 10.1128/aac.37.6.1264

Bleomycin affects cell wall anchorage of mannoproteins in Saccharomyces cerevisiae.

R Beaudouin 1, S T Lim 1, J A Steide 1, M Powell 1, J McKoy 1, A J Pramanik 1, E Johnson 1, C W Moore 1, P N Lipke 1
PMCID: PMC187951  PMID: 7687121

Abstract

Bleomycin induces strand breakage in DNA through disruption of glycosidic linkages. We investigated the ability of bleomycin to damage yeast cell walls, which are composed primarily of carbohydrate. Bleomycin treatment of intact yeast cells facilitated enzymatic conversion of yeasts to spheroplasts. Bleomycin treatment also altered anchorage of mannoproteins to the cell wall matrix in intact cells or isolated cell walls. Cell surface mannoproteins were labelled with 125I, and their solubilization was monitored. Seventeen hour treatments with bleomycin released some of the label directly into treatment supernatants and facilitated extraction of mannoproteins by dithiothreitol and lytic enzymes. Bleomycin treatments as short as 10 min caused changes in extraction of mannoproteins from intact cells. Specifically, cell wall anchorage of several mannoproteins was affected by the drug. There were drug-induced changes in extractability of mannoproteins with apparent molecular weights of 96,000, 80,000, 61,000, 41,000, 31,500, and 21,000 (determined after deglycosylation with endo-N-acetylglucosaminidase H). The similarity of results obtained in the presence and absence of cycloheximide, the appearance of cell wall effects after only 10 min of treatment, and the similarity of effects in intact cells and isolated cell walls are consistent with direct drug-induced damage and inconsistent with a mechanism dependent on expression of bleomycin-damaged genes or other intracellular mediators. The results are consistent with bleomycin-mediated increases in cell wall permeability through disruption of glycosidic cross-linking structures in the cell wall.

Full text

PDF
1264

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burger R. M., Horwitz S. B., Peisach J. Stimulation of iron(II) bleomycin activity by phosphate-containing compounds. Biochemistry. 1985 Jul 2;24(14):3623–3629. doi: 10.1021/bi00335a034. [DOI] [PubMed] [Google Scholar]
  2. Cabib E., Bowers B., Sburlati A., Silverman S. J. Fungal cell wall synthesis: the construction of a biological structure. Microbiol Sci. 1988 Dec;5(12):370–375. [PubMed] [Google Scholar]
  3. Gander J. E. Gel protein stains: glycoproteins. Methods Enzymol. 1984;104:447–451. doi: 10.1016/s0076-6879(84)04112-4. [DOI] [PubMed] [Google Scholar]
  4. Hanson B. A., Lester R. L. Effects of inositol starvation on phospholipid and glycan syntheses in Saccharomyces cerevisiae. J Bacteriol. 1980 Apr;142(1):79–89. doi: 10.1128/jb.142.1.79-89.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hauser K., Tanner W. Purification of the inducible alpha-agglutinin of S. cerevisiae and molecular cloning of the gene. FEBS Lett. 1989 Sep 25;255(2):290–294. doi: 10.1016/0014-5793(89)81108-1. [DOI] [PubMed] [Google Scholar]
  6. Kidby D. K., Davies R. Invertase and disulphide bridges in the yeast wall. J Gen Microbiol. 1970 Jun;61(3):327–333. doi: 10.1099/00221287-61-3-327. [DOI] [PubMed] [Google Scholar]
  7. Kitamura K., Yamamoto Y. Purification and properties of an enzyme, zymolyase, which lyses viable yeast cells. Arch Biochem Biophys. 1972 Nov;153(1):403–406. doi: 10.1016/0003-9861(72)90461-4. [DOI] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. McLellan W. L., Jr, Lampen J. O. Phosphomannanase (PR-factor), an enzyme required for the formation of yeast protoplasts. J Bacteriol. 1968 Mar;95(3):967–974. doi: 10.1128/jb.95.3.967-974.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Moore C. W. Bleomycin-induced DNA repair by Saccharomyces cerevisiae ATP-dependent polydeoxyribonucleotide ligase. J Bacteriol. 1988 Oct;170(10):4991–4994. doi: 10.1128/jb.170.10.4991-4994.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Moore C. W., Del Valle R., McKoy J., Pramanik A., Gordon R. E. Lesions and preferential initial localization of [S-methyl-3H]bleomycin A2 on Saccharomyces cerevisiae cell walls and membranes. Antimicrob Agents Chemother. 1992 Nov;36(11):2497–2505. doi: 10.1128/aac.36.11.2497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moore C. W. Further characterizations of bleomycin-sensitive (blm) mutants of Saccharomyces cerevisiae with implications for a radiomimetic model. J Bacteriol. 1991 Jun;173(11):3605–3608. doi: 10.1128/jb.173.11.3605-3608.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moore C. W. Internucleosomal cleavage and chromosomal degradation by bleomycin and phleomycin in yeast. Cancer Res. 1988 Dec 1;48(23):6837–6843. [PubMed] [Google Scholar]
  14. Moore C. W., Jones C. S., Wall L. A. Growth phase dependency of chromatin cleavage and degradation by bleomycin. Antimicrob Agents Chemother. 1989 Sep;33(9):1592–1599. doi: 10.1128/aac.33.9.1592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moore C. W. Modulation of bleomycin cytotoxicity. Antimicrob Agents Chemother. 1982 Apr;21(4):595–600. doi: 10.1128/aac.21.4.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murgui A., Elorza M. V., Sentandreu R. Effect of papulacandin B and calcofluor white on the incorporation of mannoproteins in the wall of Candida albicans blastospores. Biochim Biophys Acta. 1985 Aug 16;841(2):215–222. doi: 10.1016/0304-4165(85)90024-8. [DOI] [PubMed] [Google Scholar]
  17. Novick P., Ferro S., Schekman R. Order of events in the yeast secretory pathway. Cell. 1981 Aug;25(2):461–469. doi: 10.1016/0092-8674(81)90064-7. [DOI] [PubMed] [Google Scholar]
  18. Tarentino A. L., Maley F. Purification and properties of an endo-beta-N-acetylglucosaminidase from Streptomyces griseus. J Biol Chem. 1974 Feb 10;249(3):811–817. [PubMed] [Google Scholar]
  19. Terrance K., Heller P., Wu Y. S., Lipke P. N. Identification of glycoprotein components of alpha-agglutinin, a cell adhesion protein from Saccharomyces cerevisiae. J Bacteriol. 1987 Feb;169(2):475–482. doi: 10.1128/jb.169.2.475-482.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Van Rinsum J., Klis F. M., van den Ende H. Cell wall glucomannoproteins of Saccharomyces cerevisiae mnn9. Yeast. 1991 Oct;7(7):717–726. doi: 10.1002/yea.320070707. [DOI] [PubMed] [Google Scholar]
  21. Zlotnik H., Fernandez M. P., Bowers B., Cabib E. Saccharomyces cerevisiae mannoproteins form an external cell wall layer that determines wall porosity. J Bacteriol. 1984 Sep;159(3):1018–1026. doi: 10.1128/jb.159.3.1018-1026.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES