Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1993 Jun;37(6):1353–1359. doi: 10.1128/aac.37.6.1353

Experimental chemotherapy with combinations of ergosterol biosynthesis inhibitors in murine models of Chagas' disease.

R A Maldonado 1, J Molina 1, G Payares 1, J A Urbina 1
PMCID: PMC187965  PMID: 8328786

Abstract

We report the effects of ketoconazole and the bistriazole ICI 195,739 acting alone or in combination with the allylamine terbinafine (Lamisil) on murine models of Chagas' disease. Mice infected with 10(5) Trypanosoma (Schizotrypanum) cruzi blood trypomastigotes and treated orally with 30 mg of ketoconazole per kg of body weight per day for 7 days, starting at 24 h postinoculation, had 100% survival after 35 days, while controls (untreated) or animals that received 15 mg of ketoconazole or 100 mg of terbinafine per kg/day by the same route had 0% survival after the same period of time. However, all mice receiving the combination of 15 mg of ketoconazole plus 100 mg of terbinafine per kg/day survived for 35 days after infection; it was shown that the survival of the animals treated with this combination was statistically greater than that obtained with either drug acting alone and was indistinguishable from that observed with the high doses of ketoconazole, indicating a synergistic action of the drugs in vivo. However, most animals that survived after the 7-day treatments were not cured, as indicated by a delayed but persistent parasitemia. When the treatment was extended to 14 days, 100% survival was obtained 10 weeks after inoculation for mice treated with 30 mg of ketoconazole per kg/day and the combination of 15 mg of ketoconazole per kg/day plus 100 mg of terbinafine per kg/day, while two-thirds of the mice treated with 15 mg of ketoconazole per kg/day alone were alive after the 14-day treatment; controls or animals that received 100 mg of terbinafine per kg/day did not survive after 25 days. Parasitemia in all surviving mice was negative after 55 days but parasitological cure, as assessed by subinoculation of organs in naive animals, was predominant only in animals that received the combined drug treatment. We also investigated the bistriazole ICI 195,739 and found, as reported previously, that just 1 mg of the compound per kg/day administered orally for 5 days was enough to protect most mice from death 30 days after inoculation, but no parasitological cures were observed. However, in the protocol used in the present study, the protective activity of ICI 195,739 at suboptimal doses (0.5 mg/kg/day) could be enhanced when it was used in combination with terbinafine at doses of the allylamine that by themselves induced no significant protection. Survival of the mice was inversely correlated with the levels of parasitemia in all cases. Extension of the treatment period with the triazole to 15 days at 1 mg/kg/day afforded definitive protection against death, with parasitological cure being achieved in 50% of mice at 10 weeks postinoculation, but no enhancement of its activity at suboptimal doses was observed when it was used in combination with terbinafine during this extended observation period. Taken together, these results supports the proposition that ketoconazole used in combination with terbinafine could be useful in the treatment of humans with Chagas' disease because it can promote parasitological cure without the need to resort to the use of high levels of the azole, which is known to interfere with hepatic function and steroid synthesis in the host. They also support the conclusions of previous in vitro studies which suggested that the triazole ICI 195,739 blocks the proliferation of T. cruzi by a mechanism which differs from those of classical ergosterol biosynthesis inhibitors.

Full text

PDF
1355

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberts A. W., Chen J., Kuron G., Hunt V., Huff J., Hoffman C., Rothrock J., Lopez M., Joshua H., Harris E. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3957–3961. doi: 10.1073/pnas.77.7.3957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balfour J. A., Faulds D. Terbinafine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in superficial mycoses. Drugs. 1992 Feb;43(2):259–284. doi: 10.2165/00003495-199243020-00010. [DOI] [PubMed] [Google Scholar]
  3. Barrett-Bee K., Lees J., Pinder P., Campbell J., Newboult L. Biochemical studies with a novel antifungal agent, ICI 195,739. Ann N Y Acad Sci. 1988;544:231–244. doi: 10.1111/j.1749-6632.1988.tb40409.x. [DOI] [PubMed] [Google Scholar]
  4. Beach D. H., Goad L. J., Holz G. G., Jr Effects of antimycotic azoles on growth and sterol biosynthesis of Leishmania promastigotes. Mol Biochem Parasitol. 1988 Nov;31(2):149–162. doi: 10.1016/0166-6851(88)90166-1. [DOI] [PubMed] [Google Scholar]
  5. Beach D. H., Goad L. J., Holz G. G., Jr Effects of ketoconazole on sterol biosynthesis by Trypanosoma cruzi epimastigotes. Biochem Biophys Res Commun. 1986 May 14;136(3):851–856. doi: 10.1016/0006-291x(86)90410-9. [DOI] [PubMed] [Google Scholar]
  6. Berman J. D. Activity of imidazoles against Leishmania tropica in human macrophage cultures. Am J Trop Med Hyg. 1981 May;30(3):566–569. doi: 10.4269/ajtmh.1981.30.566. [DOI] [PubMed] [Google Scholar]
  7. Berman J. D., Goad L. J., Beach D. H., Holz G. G., Jr Effects of ketoconazole on sterol biosynthesis by Leishmania mexicana mexicana amastigotes in murine macrophage tumor cells. Mol Biochem Parasitol. 1986 Jul;20(1):85–92. doi: 10.1016/0166-6851(86)90145-3. [DOI] [PubMed] [Google Scholar]
  8. Berman J. D., Holz G. G., Jr, Beach D. H. Effects of ketoconazole on growth and sterol biosynthesis of Leishmania mexicana promastigotes in culture. Mol Biochem Parasitol. 1984 May;12(1):1–13. doi: 10.1016/0166-6851(84)90039-2. [DOI] [PubMed] [Google Scholar]
  9. Boyle F. T., Gilman D. J., Gravestock M. B., Wardleworth J. M. Synthesis and structure-activity relationships of a novel antifungal agent, ICI 195,739. Ann N Y Acad Sci. 1988;544:86–100. doi: 10.1111/j.1749-6632.1988.tb40391.x. [DOI] [PubMed] [Google Scholar]
  10. Brass C., Galgiani J. N., Blaschke T. F., Defelice R., O'Reilly R. A., Stevens D. A. Disposition of ketoconazole, an oral antifungal, in humans. Antimicrob Agents Chemother. 1982 Jan;21(1):151–158. doi: 10.1128/aac.21.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brener Z. Present status of chemotherapy and chemoprophylaxis of human trypanosomiasis in the Western Hemisphere. Pharmacol Ther. 1979;7(1):71–90. doi: 10.1016/0163-7258(79)90025-1. [DOI] [PubMed] [Google Scholar]
  12. Dixon D. M., Polak A. In vitro and in vivo drug studies with three agents of central nervous system phaeohyphomycosis. Chemotherapy. 1987;33(2):129–140. doi: 10.1159/000238485. [DOI] [PubMed] [Google Scholar]
  13. Docampo R., Moreno S. N., Turrens J. F., Katzin A. M., Gonzalez-Cappa S. M., Stoppani A. O. Biochemical and ultrastructural alterations produced by miconazole and econazole in Trypanosoma cruzi. Mol Biochem Parasitol. 1981 Jul;3(3):169–180. doi: 10.1016/0166-6851(81)90047-5. [DOI] [PubMed] [Google Scholar]
  14. Endo A. Chemistry, biochemistry, and pharmacology of HMG-CoA reductase inhibitors. Klin Wochenschr. 1988 May 16;66(10):421–427. doi: 10.1007/BF01745510. [DOI] [PubMed] [Google Scholar]
  15. Goad L. J., Berens R. L., Marr J. J., Beach D. H., Holz G. G., Jr The activity of ketoconazole and other azoles against Trypanosoma cruzi: biochemistry and chemotherapeutic action in vitro. Mol Biochem Parasitol. 1989 Jan 15;32(2-3):179–189. doi: 10.1016/0166-6851(89)90069-8. [DOI] [PubMed] [Google Scholar]
  16. Goad L. J., Holz G. G., Jr, Beach D. H. Sterols of ketoconazole-inhibited Leishmania mexicana mexicana promastigotes. Mol Biochem Parasitol. 1985 Jun;15(3):257–279. doi: 10.1016/0166-6851(85)90089-1. [DOI] [PubMed] [Google Scholar]
  17. Hart D. T., Lauwers W. J., Willemsens G., Vanden Bossche H., Opperdoes F. R. Perturbation of sterol biosynthesis by itraconazole and ketoconazole in Leishmania mexicana mexicana infected macrophages. Mol Biochem Parasitol. 1989 Mar 1;33(2):123–134. doi: 10.1016/0166-6851(89)90026-1. [DOI] [PubMed] [Google Scholar]
  18. Jensen J. C. Clinical pharmacokinetics of terbinafine (Lamisil). Clin Exp Dermatol. 1989 Mar;14(2):110–113. doi: 10.1111/j.1365-2230.1989.tb00904.x. [DOI] [PubMed] [Google Scholar]
  19. Kan V. L., Bennett J. E. Efficacies of four antifungal agents in experimental murine sporotrichosis. Antimicrob Agents Chemother. 1988 Nov;32(11):1619–1623. doi: 10.1128/aac.32.11.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Larralde G., Vivas J., Urbina J. A. Concentration and time dependence of the effects of ketoconazole on growth and sterol synthesis by Trypanosoma (Schizotrypanum) cruzi epimastigotes. Acta Cient Venez. 1988;39(2):140–146. [PubMed] [Google Scholar]
  21. Lazardi K., Urbina J. A., de Souza W. Ultrastructural alterations induced by ICI 195,739, a bis-triazole derivative with strong antiproliferative action against Trypanosoma (Schizotrypanum) cruzi. Antimicrob Agents Chemother. 1991 Apr;35(4):736–740. doi: 10.1128/aac.35.4.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lazardi K., Urbina J. A., de Souza W. Ultrastructural alterations induced by two ergosterol biosynthesis inhibitors, ketoconazole and terbinafine, on epimastigotes and amastigotes of Trypanosoma (Schizotrypanum) cruzi. Antimicrob Agents Chemother. 1990 Nov;34(11):2097–2105. doi: 10.1128/aac.34.11.2097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Marr J. J., Docampo R. Chemotherapy for Chagas' disease: a perspective of current therapy and considerations for future research. Rev Infect Dis. 1986 Nov-Dec;8(6):884–903. doi: 10.1093/clinids/8.6.884. [DOI] [PubMed] [Google Scholar]
  24. McCabe R. E., Remington J. S., Araujo F. G. In vitro and in vivo effects of itraconazole against Trypanosoma cruzi. Am J Trop Med Hyg. 1986 Mar;35(2):280–284. doi: 10.4269/ajtmh.1986.35.280. [DOI] [PubMed] [Google Scholar]
  25. McCabe R. E., Remington J. S., Araujo F. G. Ketoconazole inhibition of intracellular multiplication of Trypanosoma cruzi and protection of mice against lethal infection with the organism. J Infect Dis. 1984 Oct;150(4):594–601. doi: 10.1093/infdis/150.4.594. [DOI] [PubMed] [Google Scholar]
  26. McCabe R. E., Remington J. S., Araujo F. G. Ketoconazole promotes parasitological cure of mice infected with Trypanosoma cruzi. Trans R Soc Trop Med Hyg. 1987;81(4):613–615. doi: 10.1016/0035-9203(87)90430-5. [DOI] [PubMed] [Google Scholar]
  27. Petranyi G., Meingassner J. G., Mieth H. Activity of terbinafine in experimental fungal infections of laboratory animals. Antimicrob Agents Chemother. 1987 Oct;31(10):1558–1561. doi: 10.1128/aac.31.10.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Raether W., Seidenath H. Ketoconazole and other potent antimycotic azoles exhibit pronounced activity against Trypanosoma cruzi, Plasmodium berghei and Entamoeba histolytica in vivo. Z Parasitenkd. 1984;70(1):135–138. doi: 10.1007/BF00929583. [DOI] [PubMed] [Google Scholar]
  29. Ryley J. F., McGregor S. A multi-infection model for antifungal screening in vivo. J Antimicrob Chemother. 1988 Sep;22(3):353–358. doi: 10.1093/jac/22.3.353. [DOI] [PubMed] [Google Scholar]
  30. Ryley J. F., McGregor S., Wilson R. G. Activity of ICI 195,739--a novel, orally active bistriazole--in rodent models of fungal and protozoal infections. Ann N Y Acad Sci. 1988;544:310–328. doi: 10.1111/j.1749-6632.1988.tb40416.x. [DOI] [PubMed] [Google Scholar]
  31. Stütz A. Synthesis and structure-activity correlations within allylamine antimycotics. Ann N Y Acad Sci. 1988;544:46–62. doi: 10.1111/j.1749-6632.1988.tb40388.x. [DOI] [PubMed] [Google Scholar]
  32. Urbina J. A., Lazardi K., Aguirre T., Piras M. M., Piras R. Antiproliferative effects and mechanism of action of ICI 195,739, a novel bis-triazole derivative, on epimastigotes and amastigotes of Trypanosoma (Schizotrypanum) cruzi. Antimicrob Agents Chemother. 1991 Apr;35(4):730–735. doi: 10.1128/aac.35.4.730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Urbina J. A., Lazardi K., Marchan E., Visbal G., Aguirre T., Piras M. M., Piras R., Maldonado R. A., Payares G., de Souza W. Mevinolin (lovastatin) potentiates the antiproliferative effects of ketoconazole and terbinafine against Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies. Antimicrob Agents Chemother. 1993 Mar;37(3):580–591. doi: 10.1128/aac.37.3.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Urbina J. A., Vivas J., Ramos H., Larralde G., Aguilar Z., Avilán L. Alteration of lipid order profile and permeability of plasma membranes from Trypanosoma cruzi epimastigotes grown in the presence of ketoconazole. Mol Biochem Parasitol. 1988 Aug;30(2):185–195. doi: 10.1016/0166-6851(88)90111-9. [DOI] [PubMed] [Google Scholar]
  35. Urcuyo F. G., Zaias N. Oral ketoconazole in the treatment of leishmaniasis. Int J Dermatol. 1982 Sep;21(7):414–416. doi: 10.1111/j.1365-4362.1982.tb03163.x. [DOI] [PubMed] [Google Scholar]
  36. Vanden Bossche H., Marichal P., Gorrens J., Geerts H., Janssen P. A. Mode of action studies. Basis for the search of new antifungal drugs. Ann N Y Acad Sci. 1988;544:191–207. doi: 10.1111/j.1749-6632.1988.tb40404.x. [DOI] [PubMed] [Google Scholar]
  37. Villars V., Jones T. C. Clinical efficacy and tolerability of terbinafine (Lamisil)--a new topical and systemic fungicidal drug for treatment of dermatomycoses. Clin Exp Dermatol. 1989 Mar;14(2):124–127. doi: 10.1111/j.1365-2230.1989.tb00908.x. [DOI] [PubMed] [Google Scholar]
  38. de Maio A., Urbina J. A. Trypanosoma (Schizotrypanum) cruzi: terminal oxidases in exponential and stationary growth phase emipastigotes cultured in vitro. Acta Cient Venez. 1984;35(2):136–141. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES