Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1988 Jul;132(1):145–151.

DNA aneuploidy in adenomas of endocrine organs.

H Joensuu 1, P J Klemi 1
PMCID: PMC1880611  PMID: 3394796

Abstract

The nuclear DNA content of 44 pituitary, 49 thyroid, 54 parathyroid, and 17 adrenal adenomas was analyzed from paraffin-embedded tissue with flow cytometry. Interpretable histograms of good quality (CV less than 7%, mean CV, 4%) were obtained in 96% of the cases. Unequivocal evidence of DNA aneuploidy was found in 29% of pituitary, 25% of thyroid, 35% of parathyroid, and in 53% of adrenal adenomas. Excluding the multiploid (N = 2) and tetraploid adenomas (N = 5), the DNA indices of aneuploid adenomas were generally small (mean, 1.34). Patients with a diploid thyroid or parathyroid adenoma had a lower mean age at diagnosis than patients with a nondiploid adenoma. None of the adenomas gave rise to metastases after conservative surgery. It is concluded that DNA aneuploidy is common in endocrine adenomas and that the presence of DNA aneuploidy is not incompatible with a benign histologic diagnosis. The usefulness of DNA aneuploidy as a conclusive sign of malignancy in clinical practice is questioned.

Full text

PDF
149

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amberson J. B., Vaughan E. D., Jr, Gray G. F., Naus G. J. Flow cytometric analysis of nuclear DNA from adrenocortical neoplasms. A retrospective study using paraffin-embedded tissue. Cancer. 1987 Jun 15;59(12):2091–2095. doi: 10.1002/1097-0142(19870615)59:12<2091::aid-cncr2820591221>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  2. Anniko M., Tribukait B., Wersäll J. DNA ploidy and cell phase in human pituitary tumors. Cancer. 1984 Apr 15;53(8):1708–1713. doi: 10.1002/1097-0142(19840415)53:8<1708::aid-cncr2820530815>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  3. Baisch H., Göhde W., Linden W. A. Analysis of PCP-data to determine the fraction of cells in the various phases of cell cycle. Radiat Environ Biophys. 1975 Jun 13;12(1):31–39. doi: 10.1007/BF02339807. [DOI] [PubMed] [Google Scholar]
  4. Barlogie B., Drewinko B., Schumann J., Göhde W., Dosik G., Latreille J., Johnston D. A., Freireich E. J. Cellular DNA content as a marker of neoplasia in man. Am J Med. 1980 Aug;69(2):195–203. doi: 10.1016/0002-9343(80)90379-4. [DOI] [PubMed] [Google Scholar]
  5. Barlogie B., Raber M. N., Schumann J., Johnson T. S., Drewinko B., Swartzendruber D. E., Göhde W., Andreeff M., Freireich E. J. Flow cytometry in clinical cancer research. Cancer Res. 1983 Sep;43(9):3982–3997. [PubMed] [Google Scholar]
  6. Bowlby L. S., DeBault L. E., Abraham S. R. Flow cytometric DNA analysis of parathyroid glands. Relationship between nuclear DNA and pathologic classifications. Am J Pathol. 1987 Aug;128(2):338–344. [PMC free article] [PubMed] [Google Scholar]
  7. Bowlby L. S., DeBault L. E., Abraham S. R. Flow cytometric analysis of adrenal cortical tumor DNA. Relationship between cellular DNA and histopathologic classification. Cancer. 1986 Oct 1;58(7):1499–1505. doi: 10.1002/1097-0142(19861001)58:7<1499::aid-cncr2820580721>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
  8. Büchner T., Hiddemann W., Wörmann B., Kleinemeier B., Schumann J., Göhde W., Ritter J., Müller K. M., von Bassewitz D. B., Roessner A. Differential pattern of DNA-aneuploidy in human malignancies. Pathol Res Pract. 1985 Jan;179(3):310–317. doi: 10.1016/s0344-0338(85)80140-0. [DOI] [PubMed] [Google Scholar]
  9. Christov K. Flow cytometric DNA measurements in human thyroid tumors. Virchows Arch B Cell Pathol Incl Mol Pathol. 1986;51(3):255–263. doi: 10.1007/BF02899035. [DOI] [PubMed] [Google Scholar]
  10. Flint A., Lovett E. J., 3rd, Stoolman L. M., McMillan K., Schnitzer B., McClatchey K. D., Hudson J. L. Flow cytometric analysis of DNA in diagnostic cytology. Am J Clin Pathol. 1985 Sep;84(3):278–282. doi: 10.1093/ajcp/84.3.278. [DOI] [PubMed] [Google Scholar]
  11. Friedlander M. L., Hedley D. W., Taylor I. W. Clinical and biological significance of aneuploidy in human tumours. J Clin Pathol. 1984 Sep;37(9):961–974. doi: 10.1136/jcp.37.9.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Greenebaum E., Koss L. G., Elequin F., Silver C. E. The diagnostic value of flow cytometric DNA measurements in follicular tumors of the thyroid gland. Cancer. 1985 Oct 15;56(8):2011–2018. doi: 10.1002/1097-0142(19851015)56:8<2011::aid-cncr2820560821>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
  13. Hammarberg C., Slezak P., Tribukait B. Early detection of malignancy in ulcerative colitis. A flow-cytometric DNA study. Cancer. 1984 Jan 15;53(2):291–295. doi: 10.1002/1097-0142(19840115)53:2<291::aid-cncr2820530218>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  14. Hedley D. W., Friedlander M. L., Taylor I. W., Rugg C. A., Musgrove E. A. Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry. J Histochem Cytochem. 1983 Nov;31(11):1333–1335. doi: 10.1177/31.11.6619538. [DOI] [PubMed] [Google Scholar]
  15. Hosaka Y., Rainwater L. M., Grant C. S., Farrow G. M., van Heerden J. A., Lieber M. M. Pheochromocytoma: nuclear deoxyribonucleic acid patterns studied by flow cytometry. Surgery. 1986 Dec;100(6):1003–1010. [PubMed] [Google Scholar]
  16. Iversen O. E., Laerum O. D. Trout and salmon erythrocytes and human leukocytes as internal standards for ploidy control in flow cytometry. Cytometry. 1987 Mar;8(2):190–196. doi: 10.1002/cyto.990080212. [DOI] [PubMed] [Google Scholar]
  17. Joensuu H., Klemi P. J., Eerola E. Diagnostic value of flow cytometric DNA determination combined with fine needle aspiration biopsy in thyroid tumors. Anal Quant Cytol Histol. 1987 Aug;9(4):328–334. [PubMed] [Google Scholar]
  18. Joensuu H., Klemi P., Eerola E. DNA aneuploidy in follicular adenomas of the thyroid gland. Am J Pathol. 1986 Sep;124(3):373–376. [PMC free article] [PubMed] [Google Scholar]
  19. Joensuu H., Klemi P., Eerola E., Tuominen J. Influence of cellular DNA content on survival in differentiated thyroid cancer. Cancer. 1986 Dec 1;58(11):2462–2467. doi: 10.1002/1097-0142(19861201)58:11<2462::aid-cncr2820581119>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  20. Johannessen J. V., Sobrinho-Simões M., Lindmo T., Tangen K. O. The diagnostic value of flow cytometric DNA measurements in selected disorders of the human thyroid. Am J Clin Pathol. 1982 Jan;77(1):20–25. doi: 10.1093/ajcp/77.1.20. [DOI] [PubMed] [Google Scholar]
  21. Klein F. A., Kay S., Ratliff J. E., White F. K., Newsome H. H. Flow cytometric determinations of ploidy and proliferation patterns of adrenal neoplasms: an adjunct to histological classification. J Urol. 1985 Nov;134(5):862–866. doi: 10.1016/s0022-5347(17)47495-7. [DOI] [PubMed] [Google Scholar]
  22. Klein F. A., Miller N. L., Hackler R. H. Flow cytometry in feminizing adrenocortical carcinoma. J Urol. 1985 Nov;134(5):933–935. doi: 10.1016/s0022-5347(17)47533-1. [DOI] [PubMed] [Google Scholar]
  23. Kraemer B. B., Srigley J. R., Batsakis J. G., Silva E. G., Goepfert H. DNA flow cytometry of thyroid neoplasms. Arch Otolaryngol. 1985 Jan;111(1):34–38. doi: 10.1001/archotol.1985.00800030068008. [DOI] [PubMed] [Google Scholar]
  24. Mattfeldt T., Schürmann G., Feichter G. Stereology and flow-cytometry of well-differentiated follicular neoplasms of the thyroid gland. Virchows Arch A Pathol Anat Histopathol. 1987;410(5):433–441. doi: 10.1007/BF00712763. [DOI] [PubMed] [Google Scholar]
  25. Reid B. J., Haggitt R. C., Rubin C. E., Rabinovitch P. S. Barrett's esophagus. Correlation between flow cytometry and histology in detection of patients at risk for adenocarcinoma. Gastroenterology. 1987 Jul;93(1):1–11. [PubMed] [Google Scholar]
  26. Smeets A. W., Pauwels R. P., Beck J. L., Geraedts J. P., Debruyne F. M., Laarakkers L., Feitz W. F., Vooijs G. P., Ramaekers F. C. Tissue-specific markers in flow cytometry of urological cancers. III. Comparing chromosomal and flow cytometric DNA analysis of bladder tumors. Int J Cancer. 1987 Mar 15;39(3):304–310. doi: 10.1002/ijc.2910390307. [DOI] [PubMed] [Google Scholar]
  27. Stenzinger W., Suter L., Schumann J. DNA aneuploidy in congenital melanocytic nevi: suggestive evidence for premalignant changes. J Invest Dermatol. 1984 Jun;82(6):569–572. doi: 10.1111/1523-1747.ep12261301. [DOI] [PubMed] [Google Scholar]
  28. Taylor S. R., Roederer M., Murphy R. F. Flow cytometric DNA analysis of adrenocortical tumors in children. Cancer. 1987 Jun 15;59(12):2059–2063. doi: 10.1002/1097-0142(19870615)59:12<2059::aid-cncr2820591216>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  29. Tribukait B. Clinical DNA flow cytometry. Med Oncol Tumor Pharmacother. 1984;1(4):211–218. doi: 10.1007/BF02934525. [DOI] [PubMed] [Google Scholar]
  30. Vander J. B., Gaston E. A., Dawber T. R. The significance of nontoxic thyroid nodules. Final report of a 15-year study of the incidence of thyroid malignancy. Ann Intern Med. 1968 Sep;69(3):537–540. doi: 10.7326/0003-4819-69-3-537. [DOI] [PubMed] [Google Scholar]
  31. Vindeløv L. L., Christensen I. J., Nissen N. I. A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry. 1983 Mar;3(5):323–327. doi: 10.1002/cyto.990030503. [DOI] [PubMed] [Google Scholar]
  32. van den Ingh H. F., Griffioen G., Cornelisse C. J. Flow cytometric detection of aneuploidy in colorectal adenomas. Cancer Res. 1985 Jul;45(7):3392–3397. [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES