Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1993 Sep;37(9):1909–1913. doi: 10.1128/aac.37.9.1909

Structure-function analysis of antimicrotubule dinitroanilines against promastigotes of the parasitic protozoan Leishmania mexicana.

M M Chan 1, J Tzeng 1, T J Emge 1, C T Ho 1, D Fong 1
PMCID: PMC188091  PMID: 7818612

Abstract

Although leishmaniasis is a major tropical disease, the currently available drugs are toxic and inadequate. We show that the antimicrotubule herbicide trifluralin has antileishmania activity. The present study aimed at deducing the relationship between the structure of the molecule and its antiprotozoan activity. Nine dinitroanilines, all of which were analogs of trifluralin, were compared. We found that pendimethalin was 2.5-fold more potent than trifluralin, and the higher efficacy may be correlated with molecular structural features that increase the accessibility to one nitro group. This association was further supported by molecular modeling. Moreover, trifluralin samples from two sources differed in their activities by more than threefold, and gas column chromatography showed that impurities were present in the more potent sample.

Full text

PDF
1912

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bajer A. S., Molè-Bajer J. Drugs with colchicine-like effects that specifically disassemble plant but not animal microtubules. Ann N Y Acad Sci. 1986;466:767–784. doi: 10.1111/j.1749-6632.1986.tb38458.x. [DOI] [PubMed] [Google Scholar]
  2. Chan M. M., Fong D. Inhibition of leishmanias but not host macrophages by the antitubulin herbicide trifluralin. Science. 1990 Aug 24;249(4971):924–926. doi: 10.1126/science.2392684. [DOI] [PubMed] [Google Scholar]
  3. Chan M. M., Grogl M., Chen C. C., Bienen E. J., Fong D. Herbicides to curb human parasitic infections: in vitro and in vivo effects of trifluralin on the trypanosomatid protozoans. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5657–5661. doi: 10.1073/pnas.90.12.5657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chan M. M., Triemer R. E., Fong D. Effect of the anti-microtubule drug oryzalin on growth and differentiation of the parasitic protozoan Leishmania mexicana. Differentiation. 1991 Feb;46(1):15–21. doi: 10.1111/j.1432-0436.1991.tb00861.x. [DOI] [PubMed] [Google Scholar]
  5. Ebert E., Leist K. H., Hack R., Ehling G. Toxicology and hazard potential of trifluralin. Food Chem Toxicol. 1992 Dec;30(12):1031–1044. doi: 10.1016/0278-6915(92)90114-z. [DOI] [PubMed] [Google Scholar]
  6. Francis P. C., Emmerson J. L., Adams E. R., Owen N. V. Oncogenicity study of trifluralin in B6C3F1 mice. Food Chem Toxicol. 1991 Aug;29(8):549–555. doi: 10.1016/0278-6915(91)90047-b. [DOI] [PubMed] [Google Scholar]
  7. Garriott M. L., Adams E. R., Probst G. S., Emmerson J. L., Oberly T. J., Kindig D. E., Neal S. B., Bewsey B. J., Rexroat M. A. Genotoxicity studies on the preemergence herbicide trifluralin. Mutat Res. 1991 Jun;260(2):187–193. doi: 10.1016/0165-1218(91)90007-9. [DOI] [PubMed] [Google Scholar]
  8. Hess F. D., Bayer D. E. Binding of the herbicide trifluralin to Chlamydomonas flagellar tubulin. J Cell Sci. 1977 Apr;24:351–360. doi: 10.1242/jcs.24.1.351. [DOI] [PubMed] [Google Scholar]
  9. Hess F. D. The influence of the herbicide trifluralin on flagellar regeneration in Chlamydomonas. Exp Cell Res. 1979 Mar 1;119(1):99–109. doi: 10.1016/0014-4827(79)90339-2. [DOI] [PubMed] [Google Scholar]
  10. Lacey E. Mode of action of benzimidazoles. Parasitol Today. 1990 Apr;6(4):112–115. doi: 10.1016/0169-4758(90)90227-u. [DOI] [PubMed] [Google Scholar]
  11. Levandowsky M., Hauser D. C., Glassgold J. M. Chemosensory responses of a protozoan are modified by antitubulins. J Bacteriol. 1975 Nov;124(2):1037–1038. doi: 10.1128/jb.124.2.1037-1038.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Morejohn L. C., Fosket D. E. The biochemistry of compounds with anti-microtubule activity in plant cells. Pharmacol Ther. 1991;51(2):217–230. doi: 10.1016/0163-7258(91)90078-z. [DOI] [PubMed] [Google Scholar]
  13. Rowinsky E. K., Donehower R. C. The clinical pharmacology and use of antimicrotubule agents in cancer chemotherapeutics. Pharmacol Ther. 1991 Oct;52(1):35–84. doi: 10.1016/0163-7258(91)90086-2. [DOI] [PubMed] [Google Scholar]
  14. Sadigursky M., Brodskyn C. I. A new liquid medium without blood and serum for culture of hemoflagellates. Am J Trop Med Hyg. 1986 Sep;35(5):942–944. doi: 10.4269/ajtmh.1986.35.942. [DOI] [PubMed] [Google Scholar]
  15. Seeback T., Hemphill A., Lawson D. The Cytoskeleton of trypanosomes. Parasitol Today. 1990 Feb;6(2):49–52. doi: 10.1016/0169-4758(90)90069-g. [DOI] [PubMed] [Google Scholar]
  16. Stargell L. A., Heruth D. P., Gaertig J., Gorovsky M. A. Drugs affecting microtubule dynamics increase alpha-tubulin mRNA accumulation via transcription in Tetrahymena thermophila. Mol Cell Biol. 1992 Apr;12(4):1443–1450. doi: 10.1128/mcb.12.4.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES