Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1994 May;38(5):1107–1111. doi: 10.1128/aac.38.5.1107

Protein binding of human immunodeficiency virus protease inhibitor KNI-272 and alteration of its in vitro antiretroviral activity in the presence of high concentrations of proteins.

S Kageyama 1, B D Anderson 1, B L Hoesterey 1, H Hayashi 1, Y Kiso 1, K P Flora 1, H Mitsuya 1
PMCID: PMC188158  PMID: 8067746

Abstract

KNI-272 represents a peptide-based protease inhibitor having potent antiretroviral activity against human immunodeficiency virus (HIV) in vitro. The structure contains allophenylnorstatine [(2S,3S)-3-amino-2-hydroxy-4-phenylbutyric acid] with a hydroxymethylcarbonyl isostere. We asked whether this experimental anti-HIV agent could exert its activity in vitro in the presence of relatively high concentrations of fetal calf serum (FCS) and assessed its protein-binding properties by using fresh human plasma preparations. The 50 and 75% inhibitory concentrations of KNI-272 against HIV type 1 replication in vitro were 3- to 5-fold and 5-fold higher in the presence of 50% FCS and 15- to 25-fold and 25- to 100-fold higher in the presence of 80% ECS, respectively, than those with 15% FCS, whereas the antiviral activity of 2',3'-dideoxyinosine was not significantly affected by FCS concentrations in the culture. Detailed studies of the protein binding of KNI-272 suggest that in human plasma binding occurs predominantly to alpha 1-acid glycoprotein and that KNI-272 is probably extensively (approximately 98 to 99%) protein bound at concentrations likely to be achieved in the circulation. Thus, higher levels of KNI-272 in plasma may be required when this compound undergoes clinical trials relative to those inferred from in vitro data involving the use of 10 to 15% FCS-containing culture media. The current data may have a relevance to other antiretroviral drugs that are under development and that have a high protein-binding capacity.

Full text

PDF
1107

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrams D. I., Kuno S., Wong R., Jeffords K., Nash M., Molaghan J. B., Gorter R., Ueno R. Oral dextran sulfate (UA001) in the treatment of the acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. Ann Intern Med. 1989 Feb 1;110(3):183–188. doi: 10.7326/0003-4819-110-3-183. [DOI] [PubMed] [Google Scholar]
  2. Adams J. B., Wacher A. Specific changes in the glycoprotein components of seromucoid in pregnancy. Clin Chim Acta. 1968 Jul;21(1):155–157. doi: 10.1016/0009-8981(68)90024-7. [DOI] [PubMed] [Google Scholar]
  3. Blanchard J., Fink W. T., Duffy J. P. Effect of sorbitol on interaction of phenolic preservatives with polysorbate 80. J Pharm Sci. 1977 Oct;66(10):1470–1473. doi: 10.1002/jps.2600661031. [DOI] [PubMed] [Google Scholar]
  4. Bock M. G., DiPardo R. M., Evans B. E., Rittle K. E., Boger J., Poe M., LaMont B. I., Lynch R. J., Ulm E. H., Vlasuk G. P. Renin inhibitors. Statine-containing tetrapeptides with varied hydrophobic carboxy termini. J Med Chem. 1987 Oct;30(10):1853–1857. doi: 10.1021/jm00393a029. [DOI] [PubMed] [Google Scholar]
  5. Brinkworth R. I., Woon T. C., Fairlie D. P. Inhibition of HIV-1 proteinase by non-peptide carboxylates. Biochem Biophys Res Commun. 1991 Apr 15;176(1):241–246. doi: 10.1016/0006-291x(91)90915-t. [DOI] [PubMed] [Google Scholar]
  6. Crockson R. A., Payne C. J., Ratcliff A. P., Soothill J. F. Time sequence of acute phase reactive proteins following surgical trauma. Clin Chim Acta. 1966 Oct;14(4):435–441. doi: 10.1016/0009-8981(66)90030-1. [DOI] [PubMed] [Google Scholar]
  7. DesJarlais R. L., Seibel G. L., Kuntz I. D., Furth P. S., Alvarez J. C., Ortiz de Montellano P. R., DeCamp D. L., Babé L. M., Craik C. S. Structure-based design of nonpeptide inhibitors specific for the human immunodeficiency virus 1 protease. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6644–6648. doi: 10.1073/pnas.87.17.6644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Flexner C., Barditch-Crovo P. A., Kornhauser D. M., Farzadegan H., Nerhood L. J., Chaisson R. E., Bell K. M., Lorentsen K. J., Hendrix C. W., Petty B. G. Pharmacokinetics, toxicity, and activity of intravenous dextran sulfate in human immunodeficiency virus infection. Antimicrob Agents Chemother. 1991 Dec;35(12):2544–2550. doi: 10.1128/aac.35.12.2544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Greenlee W. J. Renin inhibitors. Med Res Rev. 1990 Apr-Jun;10(2):173–236. doi: 10.1002/med.2610100203. [DOI] [PubMed] [Google Scholar]
  10. Hartman N. R., Johns D. G., Mitsuya H. Pharmacokinetic analysis of dextran sulfate in rats as pertains to its clinical usefulness for therapy of HIV infection. AIDS Res Hum Retroviruses. 1990 Jun;6(6):805–812. doi: 10.1089/aid.1990.6.805. [DOI] [PubMed] [Google Scholar]
  11. Jamieson J. C., Friesen A. D., Ashton F. E., Chou B. Studies on acute phase proteins of rat serum. 1. Isolation and partial characterization of an 1 -acid glycoprotein and an 2 -macroglobulin. Can J Biochem. 1972 Aug;50(8):856–870. doi: 10.1139/o72-121. [DOI] [PubMed] [Google Scholar]
  12. Kageyama S., Mimoto T., Murakawa Y., Nomizu M., Ford H., Jr, Shirasaka T., Gulnik S., Erickson J., Takada K., Hayashi H. In vitro anti-human immunodeficiency virus (HIV) activities of transition state mimetic HIV protease inhibitors containing allophenylnorstatine. Antimicrob Agents Chemother. 1993 Apr;37(4):810–817. doi: 10.1128/aac.37.4.810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lorentsen K. J., Hendrix C. W., Collins J. M., Kornhauser D. M., Petty B. G., Klecker R. W., Flexner C., Eckel R. H., Lietman P. S. Dextran sulfate is poorly absorbed after oral administration. Ann Intern Med. 1989 Oct 1;111(7):561–566. doi: 10.7326/0003-4819-111-7-561. [DOI] [PubMed] [Google Scholar]
  14. Mimoto T., Imai J., Kisanuki S., Enomoto H., Hattori N., Akaji K., Kiso Y. Kynostatin (KNI)-227 and -272, highly potent anti-HIV agents: conformationally constrained tripeptide inhibitors of HIV protease containing allophenylnorstatine. Chem Pharm Bull (Tokyo) 1992 Aug;40(8):2251–2253. doi: 10.1248/cpb.40.2251. [DOI] [PubMed] [Google Scholar]
  15. Oie S., Jacobson M. A., Abrams D. I. Alpha 1-acid glycoprotein levels in AIDS patients before and after short-term treatment with zidovudine (ZDV) J Acquir Immune Defic Syndr. 1993 May;6(5):531–533. [PubMed] [Google Scholar]
  16. Shirasaka T., Yarchoan R., O'Brien M. C., Husson R. N., Anderson B. D., Kojima E., Shimada T., Broder S., Mitsuya H. Changes in drug sensitivity of human immunodeficiency virus type 1 during therapy with azidothymidine, dideoxycytidine, and dideoxyinosine: an in vitro comparative study. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):562–566. doi: 10.1073/pnas.90.2.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tokita K., Burke J. F., Yoshizaki H., Fischer S., Schmid K. The constancy of the alpha-1-acid glycoprotein variants of normal adults under conditions of severe stress. J Clin Invest. 1966 Oct;45(10):1624–1630. doi: 10.1172/JCI105469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tonn G. R., Kerr C. R., Axelson J. E. In vitro protein binding of propafenone and 5-hydroxypropafenone in serum, in solutions of isolated serum proteins, and to red blood cells. J Pharm Sci. 1992 Nov;81(11):1098–1103. doi: 10.1002/jps.2600811112. [DOI] [PubMed] [Google Scholar]
  19. WINZLER R. J. Determination of serum glycoproteins. Methods Biochem Anal. 1955;2:279–311. doi: 10.1002/9780470110188.ch10. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES