Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1993 May;142(5):1544–1555.

Comparative lymphokine secretion by cultured normal human cervical keratinocytes, papillomavirus-immortalized, and carcinoma cell lines.

C D Woodworth 1, S Simpson 1
PMCID: PMC1886905  PMID: 8098584

Abstract

The pathogenesis of cervical human papillomavirus (HPV) infection is influenced by the host's immune response. This response depends upon secretion of specific lymphokines to recruit and activate immune cells at the site of infection. To examine whether cervical cells enhance immune-responsiveness, secretion of lymphokines by cultures of normal cervical cells, HPV-immortalized cervical lines, and carcinoma lines was compared. Normal cervical cells constitutively secreted interleukin-1 alpha (IL-1 alpha), IL-1 beta, IL-1 receptor antagonist, IL-6, IL-8, tumor necrosis factor-alpha, and granulocyte macrophage colony stimulating factor. Lymphokines were also produced by exo- and endocervical epithelia in vivo. In contrast, four cervical cell lines immortalized by HPV DNAs and three carcinoma lines secreted selected lymphokines at significantly reduced levels. Interferon-gamma induced major histocompatibility class I and II proteins and intercellular adhesion molecule-I in normal cells, but results in immortal or carcinoma lines were variable. These results suggest that cervical epithelial cells have the potential to influence inflammation and immunity in the cervical mucosa. Furthermore, decreased expression of lymphokines and histocompatibility molecules by HPV-immortalized cervical cells suggests that similar alterations might accompany persistent HPV infections in vivo.

Full text

PDF
1547

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AUERSPERG N., HAWRYLUK A. P. Chromosome observations on three epithelial-cell cultures derived from carcinomas of the human cervix. J Natl Cancer Inst. 1962 Mar;28:605–627. [PubMed] [Google Scholar]
  2. Baldari C., Murray J. A., Ghiara P., Cesareni G., Galeotti C. L. A novel leader peptide which allows efficient secretion of a fragment of human interleukin 1 beta in Saccharomyces cerevisiae. EMBO J. 1987 Jan;6(1):229–234. doi: 10.1002/j.1460-2075.1987.tb04743.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barker J. N., Mitra R. S., Griffiths C. E., Dixit V. M., Nickoloff B. J. Keratinocytes as initiators of inflammation. Lancet. 1991 Jan 26;337(8735):211–214. doi: 10.1016/0140-6736(91)92168-2. [DOI] [PubMed] [Google Scholar]
  4. Bosch F. X., Leube R. E., Achtstätter T., Moll R., Franke W. W. Expression of simple epithelial type cytokeratins in stratified epithelia as detected by immunolocalization and hybridization in situ. J Cell Biol. 1988 May;106(5):1635–1648. doi: 10.1083/jcb.106.5.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bowden P. E., Woodworth C. D., Doniger J., DiPaolo J. A. Down-regulation of keratin 14 gene expression after v-Ha-ras transfection of human papillomavirus-immortalized human cervical epithelial cells. Cancer Res. 1992 Nov 1;52(21):5865–5871. [PubMed] [Google Scholar]
  6. Castello G., Esposito G., Stellato G., Dalla Mora L., Abate G., Germano A. Immunological abnormalities in patients with cervical carcinoma. Gynecol Oncol. 1986 Sep;25(1):61–64. doi: 10.1016/0090-8258(86)90065-x. [DOI] [PubMed] [Google Scholar]
  7. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  8. Connor M. E., Stern P. L. Loss of MHC class-I expression in cervical carcinomas. Int J Cancer. 1990 Dec 15;46(6):1029–1034. doi: 10.1002/ijc.2910460614. [DOI] [PubMed] [Google Scholar]
  9. DiPaolo J. A., Woodworth C. D., Popescu N. C., Notario V., Doniger J. Induction of human cervical squamous cell carcinoma by sequential transfection with human papillomavirus 16 DNA and viral Harvey ras. Oncogene. 1989 Apr;4(4):395–399. [PubMed] [Google Scholar]
  10. Dustin M. L., Rothlein R., Bhan A. K., Dinarello C. A., Springer T. A. Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J Immunol. 1986 Jul 1;137(1):245–254. [PubMed] [Google Scholar]
  11. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  12. Ferguson A., Moore M., Fox H. Expression of MHC products and leucocyte differentiation antigens in gynaecological neoplasms: an immunohistological analysis of the tumour cells and infiltrating leucocytes. Br J Cancer. 1985 Oct;52(4):551–563. doi: 10.1038/bjc.1985.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Freedman R. S., Bowen J. M., Leibovitz A., Pathak S., Siciliano M. J., Gallager H. S., Giovanella B. C. Characterization of a cell line (SW756) derived from a human squamous carcinoma of the uterine cervix. In Vitro. 1982 Aug;18(8):719–726. doi: 10.1007/BF02796428. [DOI] [PubMed] [Google Scholar]
  14. Friedl F., Kimura I., Osato T., Ito Y. Studies on a new human cell line (SiHa) derived from carcinoma of uterus. I. Its establishment and morphology. Proc Soc Exp Biol Med. 1970 Nov;135(2):543–545. doi: 10.3181/00379727-135-35091a. [DOI] [PubMed] [Google Scholar]
  15. Glew S. S., Duggan-Keen M., Cabrera T., Stern P. L. HLA class II antigen expression in human papillomavirus-associated cervical cancer. Cancer Res. 1992 Jul 15;52(14):4009–4016. [PubMed] [Google Scholar]
  16. Gubler U., Chua A. O., Stern A. S., Hellmann C. P., Vitek M. P., DeChiara T. M., Benjamin W. R., Collier K. J., Dukovich M., Familletti P. C. Recombinant human interleukin 1 alpha: purification and biological characterization. J Immunol. 1986 Apr 1;136(7):2492–2497. [PubMed] [Google Scholar]
  17. Hannum C. H., Wilcox C. J., Arend W. P., Joslin F. G., Dripps D. J., Heimdal P. L., Armes L. G., Sommer A., Eisenberg S. P., Thompson R. C. Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor. Nature. 1990 Jan 25;343(6256):336–340. doi: 10.1038/343336a0. [DOI] [PubMed] [Google Scholar]
  18. Hawley-Nelson P., Vousden K. H., Hubbert N. L., Lowy D. R., Schiller J. T. HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J. 1989 Dec 1;8(12):3905–3910. doi: 10.1002/j.1460-2075.1989.tb08570.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Heike T., Miyatake S., Yoshida M., Arai K., Arai N. Bovine papilloma virus encoded E2 protein activates lymphokine genes through DNA elements, distinct from the consensus motif, in the long control region of its own genome. EMBO J. 1989 May;8(5):1411–1417. doi: 10.1002/j.1460-2075.1989.tb03522.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Herzyk D. J., Berger A. E., Allen J. N., Wewers M. D. Sandwich ELISA formats designed to detect 17 kDa IL-1 beta significantly underestimate 35 kDa IL-1 beta. J Immunol Methods. 1992 Apr 8;148(1-2):243–254. doi: 10.1016/0022-1759(92)90178-v. [DOI] [PubMed] [Google Scholar]
  21. Hronis T. S., Steinberg M. L., Defendi V., Sun T. T. Simple epithelial nature of some simian virus-40-transformed human epidermal keratinocytes. Cancer Res. 1984 Dec;44(12 Pt 1):5797–5804. [PubMed] [Google Scholar]
  22. Hurlin P. J., Kaur P., Smith P. P., Perez-Reyes N., Blanton R. A., McDougall J. K. Progression of human papillomavirus type 18-immortalized human keratinocytes to a malignant phenotype. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):570–574. doi: 10.1073/pnas.88.2.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kupper T. S. Mechanisms of cutaneous inflammation. Interactions between epidermal cytokines, adhesion molecules, and leukocytes. Arch Dermatol. 1989 Oct;125(10):1406–1412. doi: 10.1001/archderm.125.10.1406. [DOI] [PubMed] [Google Scholar]
  24. Luger T. A., Schwarz T. Evidence for an epidermal cytokine network. J Invest Dermatol. 1990 Dec;95(6 Suppl):100S–104S. doi: 10.1111/1523-1747.ep12874944. [DOI] [PubMed] [Google Scholar]
  25. Malejczyk J., Malejczyk M., Urbanski A., Köck A., Jablonska S., Orth G., Luger T. A. Constitutive release of IL6 by human papillomavirus type 16 (HPV16)-harboring keratinocytes: a mechanism augmenting the NK-cell-mediated lysis of HPV-bearing neoplastic cells. Cell Immunol. 1991 Aug;136(1):155–164. doi: 10.1016/0008-8749(91)90390-w. [DOI] [PubMed] [Google Scholar]
  26. Matsushima K., Morishita K., Yoshimura T., Lavu S., Kobayashi Y., Lew W., Appella E., Kung H. F., Leonard E. J., Oppenheim J. J. Molecular cloning of a human monocyte-derived neutrophil chemotactic factor (MDNCF) and the induction of MDNCF mRNA by interleukin 1 and tumor necrosis factor. J Exp Med. 1988 Jun 1;167(6):1883–1893. doi: 10.1084/jem.167.6.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McArdle J. P., Muller H. K. Quantitative assessment of Langerhans' cells in human cervical intraepithelial neoplasia and wart virus infection. Am J Obstet Gynecol. 1986 Mar;154(3):509–515. doi: 10.1016/0002-9378(86)90592-2. [DOI] [PubMed] [Google Scholar]
  28. McCance D. J., Kopan R., Fuchs E., Laimins L. A. Human papillomavirus type 16 alters human epithelial cell differentiation in vitro. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7169–7173. doi: 10.1073/pnas.85.19.7169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Moll R., Levy R., Czernobilsky B., Hohlweg-Majert P., Dallenbach-Hellweg G., Franke W. W. Cytokeratins of normal epithelia and some neoplasms of the female genital tract. Lab Invest. 1983 Nov;49(5):599–610. [PubMed] [Google Scholar]
  30. Morris H. H., Gatter K. C., Sykes G., Casemore V., Mason D. Y. Langerhans' cells in human cervical epithelium: effects of wart virus infection and intraepithelial neoplasia. Br J Obstet Gynaecol. 1983 May;90(5):412–420. doi: 10.1111/j.1471-0528.1983.tb08936.x. [DOI] [PubMed] [Google Scholar]
  31. Münger K., Phelps W. C., Bubb V., Howley P. M., Schlegel R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol. 1989 Oct;63(10):4417–4421. doi: 10.1128/jvi.63.10.4417-4421.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Oldstone M. B. Molecular anatomy of viral persistence. J Virol. 1991 Dec;65(12):6381–6386. doi: 10.1128/jvi.65.12.6381-6386.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pecoraro G., Lee M., Morgan D., Defendi V. Evolution of in vitro transformation and tumorigenesis of HPV16 and HPV18 immortalized primary cervical epithelial cells. Am J Pathol. 1991 Jan;138(1):1–8. [PMC free article] [PubMed] [Google Scholar]
  34. Piechaczyk M., Blanchard J. M., Marty L., Dani C., Panabieres F., El Sabouty S., Fort P., Jeanteur P. Post-transcriptional regulation of glyceraldehyde-3-phosphate-dehydrogenase gene expression in rat tissues. Nucleic Acids Res. 1984 Sep 25;12(18):6951–6963. doi: 10.1093/nar/12.18.6951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Roche J. K., Crum C. P. Local immunity and the uterine cervix: implications for cancer-associated viruses. Cancer Immunol Immunother. 1991;33(4):203–209. doi: 10.1007/BF01744938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Roncalli M., Sideri M., Giè P., Servida E. Immunophenotypic analysis of the transformation zone of human cervix. Lab Invest. 1988 Feb;58(2):141–149. [PubMed] [Google Scholar]
  37. Schiffman M. H. Recent progress in defining the epidemiology of human papillomavirus infection and cervical neoplasia. J Natl Cancer Inst. 1992 Mar 18;84(6):394–398. doi: 10.1093/jnci/84.6.394. [DOI] [PubMed] [Google Scholar]
  38. Sutherland G. R., Baker E., Callen D. F., Hyland V. J., Wong G., Clark S., Jones S. S., Eglinton L. K., Shannon M. F., Lopez A. F. Interleukin 4 is at 5q31 and interleukin 6 is at 7p15. Hum Genet. 1988 Aug;79(4):335–337. doi: 10.1007/BF00282171. [DOI] [PubMed] [Google Scholar]
  39. Tabibzadeh S. Human endometrium: an active site of cytokine production and action. Endocr Rev. 1991 Aug;12(3):272–290. doi: 10.1210/edrv-12-3-272. [DOI] [PubMed] [Google Scholar]
  40. Tay S. K., Jenkins D., Maddox P., Campion M., Singer A. Subpopulations of Langerhans' cells in cervical neoplasia. Br J Obstet Gynaecol. 1987 Jan;94(1):10–15. doi: 10.1111/j.1471-0528.1987.tb02244.x. [DOI] [PubMed] [Google Scholar]
  41. Tay S. K., Jenkins D., Maddox P., Singer A. Lymphocyte phenotypes in cervical intraepithelial neoplasia and human papillomavirus infection. Br J Obstet Gynaecol. 1987 Jan;94(1):16–21. doi: 10.1111/j.1471-0528.1987.tb02245.x. [DOI] [PubMed] [Google Scholar]
  42. Tsutsumi K., Belaguli N., Qi S., Michalak T. I., Gulliver W. P., Pater A., Pater M. M. Human papillomavirus 16 DNA immortalizes two types of normal human epithelial cells of the uterine cervix. Am J Pathol. 1992 Feb;140(2):255–261. [PMC free article] [PubMed] [Google Scholar]
  43. Turyk M. E., Golub T. R., Wood N. B., Hawkins J. L., Wilbanks G. D. Growth and characterization of epithelial cells from normal human uterine ectocervix and endocervix. In Vitro Cell Dev Biol. 1989 Jun;25(6):544–556. doi: 10.1007/BF02623567. [DOI] [PubMed] [Google Scholar]
  44. Vardy D. A., Baadsgaard O., Hansen E. R., Lisby S., Vejlsgaard G. L. The cellular immune response to human papillomavirus infection. Int J Dermatol. 1990 Nov;29(9):603–610. doi: 10.1111/j.1365-4362.1990.tb02579.x. [DOI] [PubMed] [Google Scholar]
  45. Warhol M. J., Pinkus G. S., Rice R. H., El-Tawil G. H., Lancaster W. D., Jenson A. B., Kurman R. J. Papillomavirus infection of the cervix. III: Relationship of the presence of viral structural proteins to the expression of involucrin. Int J Gynecol Pathol. 1984;3(1):71–81. doi: 10.1097/00004347-198403010-00006. [DOI] [PubMed] [Google Scholar]
  46. Weikel W., Wagner R., Moll R. Characterization of subcolumnar reserve cells and other epithelia of human uterine cervix. Demonstration of diverse cytokeratin polypeptides in reserve cells. Virchows Arch B Cell Pathol Incl Mol Pathol. 1987;54(2):98–110. doi: 10.1007/BF02899201. [DOI] [PubMed] [Google Scholar]
  47. Wong G. G., Witek J. S., Temple P. A., Wilkens K. M., Leary A. C., Luxenberg D. P., Jones S. S., Brown E. L., Kay R. M., Orr E. C. Human GM-CSF: molecular cloning of the complementary DNA and purification of the natural and recombinant proteins. Science. 1985 May 17;228(4701):810–815. doi: 10.1126/science.3923623. [DOI] [PubMed] [Google Scholar]
  48. Woodworth C. D., Bowden P. E., Doniger J., Pirisi L., Barnes W., Lancaster W. D., DiPaolo J. A. Characterization of normal human exocervical epithelial cells immortalized in vitro by papillomavirus types 16 and 18 DNA. Cancer Res. 1988 Aug 15;48(16):4620–4628. [PubMed] [Google Scholar]
  49. Woodworth C. D., Cheng S., Simpson S., Hamacher L., Chow L. T., Broker T. R., DiPaolo J. A. Recombinant retroviruses encoding human papillomavirus type 18 E6 and E7 genes stimulate proliferation and delay differentiation of human keratinocytes early after infection. Oncogene. 1992 Apr;7(4):619–626. [PubMed] [Google Scholar]
  50. Woodworth C. D., Waggoner S., Barnes W., Stoler M. H., DiPaolo J. A. Human cervical and foreskin epithelial cells immortalized by human papillomavirus DNAs exhibit dysplastic differentiation in vivo. Cancer Res. 1990 Jun 15;50(12):3709–3715. [PubMed] [Google Scholar]
  51. Yuspa S. H., Kilkenny A. E., Steinert P. M., Roop D. R. Expression of murine epidermal differentiation markers is tightly regulated by restricted extracellular calcium concentrations in vitro. J Cell Biol. 1989 Sep;109(3):1207–1217. doi: 10.1083/jcb.109.3.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES