Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1994 Apr;144(4):776–786.

Variant sublines of early-stage human melanomas selected for tumorigenicity in nude mice express a multicytokine-resistant phenotype.

H Kobayashi 1, S Man 1, J R MacDougall 1, C H Graham 1, C Lu 1, R S Kerbel 1
PMCID: PMC1887247  PMID: 8160777

Abstract

Surgical removal of early-stage radial growth phase or vertical growth phase primary cutaneous human melanomas usually results in cure of the disease. Hence there are few examples of genetically-related paired human melanoma cell lines for study in which one member of the pair is from a curable early-stage lesion and the partner is a more aggressive malignant variant. A rapid method of obtaining such variants is described. It consists of injecting cells from established early-stage radial growth phase or vertical growth phase melanoma cell lines--which are normally non- or poorly tumorigenic in nude mice--into such hosts, where the cell inoculum is co-mixed with Matrigel, a reconstituted basement membrane extract. This resulted in the rapid formation of progressively growing solid tumors from which permanent cell lines were established. Subsequently, the sublines were found to be frankly tumorigenic upon retransplantation into new nude mouse hosts in the absence of Matrigel co-injection. This process was repeated a second time, resulting in the isolation of secondary sublines, manifesting a stepwise increase in tumorigenic properties. The tumorigenic variant sublines were examined for their relative sensitivity to a panel of different cytokines that are normally growth inhibitory for melanoma cells from early-stage primary lesions. All the sublines were found to express an increased resistance to the cytokines transforming growth factor-beta, interleukin-6, interleukin-1 and tumor necrosis factor-alpha, and did so in a stable manner. Thus the results support the hypothesis that a progressive multicytokine resistance accompanies the progression of human melanoma. The availability of such related sublines should provide a valuable resource to help study the changes associated with, and perhaps causative of, disease progression in human malignant melanomas.

Full text

PDF
776

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaronson S. A. Growth factors and cancer. Science. 1991 Nov 22;254(5035):1146–1153. doi: 10.1126/science.1659742. [DOI] [PubMed] [Google Scholar]
  2. Albelda S. M., Mette S. A., Elder D. E., Stewart R., Damjanovich L., Herlyn M., Buck C. A. Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. Cancer Res. 1990 Oct 15;50(20):6757–6764. [PubMed] [Google Scholar]
  3. Albini A., Melchiori A., Garofalo A., Noonan D. M., Basolo F., Taraboletti G., Chader G. J., Gavazzi R. Matrigel promotes retinoblastoma cell growth in vitro and in vivo. Int J Cancer. 1992 Sep 9;52(2):234–240. doi: 10.1002/ijc.2910520214. [DOI] [PubMed] [Google Scholar]
  4. Clark W. H., Jr, Elder D. E., Van Horn M. The biologic forms of malignant melanoma. Hum Pathol. 1986 May;17(5):443–450. doi: 10.1016/s0046-8177(86)80032-6. [DOI] [PubMed] [Google Scholar]
  5. Clark W. H. Tumour progression and the nature of cancer. Br J Cancer. 1991 Oct;64(4):631–644. doi: 10.1038/bjc.1991.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cornil I., Theodorescu D., Man S., Herlyn M., Jambrosic J., Kerbel R. S. Fibroblast cell interactions with human melanoma cells affect tumor cell growth as a function of tumor progression. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6028–6032. doi: 10.1073/pnas.88.14.6028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Filmus J., Kerbel R. S. Development of resistance mechanisms to the growth-inhibitory effects of transforming growth factor-beta during tumor progression. Curr Opin Oncol. 1993 Jan;5(1):123–129. [PubMed] [Google Scholar]
  8. Fridman R., Giaccone G., Kanemoto T., Martin G. R., Gazdar A. F., Mulshine J. L. Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6698–6702. doi: 10.1073/pnas.87.17.6698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fridman R., Kibbey M. C., Royce L. S., Zain M., Sweeney M., Jicha D. L., Yannelli J. R., Martin G. R., Kleinman H. K. Enhanced tumor growth of both primary and established human and murine tumor cells in athymic mice after coinjection with Matrigel. J Natl Cancer Inst. 1991 Jun 5;83(11):769–774. doi: 10.1093/jnci/83.11.769. [DOI] [PubMed] [Google Scholar]
  10. Fridman R., Sweeney T. M., Zain M., Martin G. R., Kleinman H. K. Malignant transformation of NIH-3T3 cells after subcutaneous co-injection with a reconstituted basement membrane (matrigel). Int J Cancer. 1992 Jul 9;51(5):740–744. doi: 10.1002/ijc.2910510513. [DOI] [PubMed] [Google Scholar]
  11. Herlyn M. Human melanoma: development and progression. Cancer Metastasis Rev. 1990 Sep;9(2):101–112. doi: 10.1007/BF00046337. [DOI] [PubMed] [Google Scholar]
  12. Herlyn M., Kath R., Williams N., Valyi-Nagy I., Rodeck U. Growth-regulatory factors for normal, premalignant, and malignant human cells in vitro. Adv Cancer Res. 1990;54:213–234. doi: 10.1016/s0065-230x(08)60812-x. [DOI] [PubMed] [Google Scholar]
  13. Holzmann B., Bröcker E. B., Lehmann J. M., Ruiter D. J., Sorg C., Riethmüller G., Johnson J. P. Tumor progression in human malignant melanoma: five stages defined by their antigenic phenotypes. Int J Cancer. 1987 Apr 15;39(4):466–471. doi: 10.1002/ijc.2910390410. [DOI] [PubMed] [Google Scholar]
  14. Ishikawa M., Fernandez B., Kerbel R. S. Highly pigmented human melanoma variant which metastasizes widely in nude mice, including to skin and brain. Cancer Res. 1988 Sep 1;48(17):4897–4903. [PubMed] [Google Scholar]
  15. Johnson J. P., Stade B. G., Holzmann B., Schwäble W., Riethmüller G. De novo expression of intercellular-adhesion molecule 1 in melanoma correlates with increased risk of metastasis. Proc Natl Acad Sci U S A. 1989 Jan;86(2):641–644. doi: 10.1073/pnas.86.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kath R., Jambrosic J. A., Holland L., Rodeck U., Herlyn M. Development of invasive and growth factor-independent cell variants from primary human melanomas. Cancer Res. 1991 Apr 15;51(8):2205–2211. [PubMed] [Google Scholar]
  17. Kerbel R. S. Expression of multi-cytokine resistance and multi-growth factor independence in advanced stage metastatic cancer. Malignant melanoma as a paradigm. Am J Pathol. 1992 Sep;141(3):519–524. [PMC free article] [PubMed] [Google Scholar]
  18. Kerbel R. S. Growth dominance of the metastatic cancer cell: cellular and molecular aspects. Adv Cancer Res. 1990;55:87–132. doi: 10.1016/s0065-230x(08)60469-8. [DOI] [PubMed] [Google Scholar]
  19. Lu C., Rak J. W., Kobayashi H., Kerbel R. S. Increased resistance to oncostatin M-induced growth inhibition of human melanoma cell lines derived from advanced-stage lesions. Cancer Res. 1993 Jun 15;53(12):2708–2711. [PubMed] [Google Scholar]
  20. Lu C., Vickers M. F., Kerbel R. S. Interleukin 6: a fibroblast-derived growth inhibitor of human melanoma cells from early but not advanced stages of tumor progression. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9215–9219. doi: 10.1073/pnas.89.19.9215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mehta R. R., Graves J. M., Hart G. D., Shilkaitis A., Das Gupta T. K. Growth and metastasis of human breast carcinomas with Matrigel in athymic mice. Breast Cancer Res Treat. 1993;25(1):65–71. doi: 10.1007/BF00662402. [DOI] [PubMed] [Google Scholar]
  22. Passaniti A., Isaacs J. T., Haney J. A., Adler S. W., Cujdik T. J., Long P. V., Kleinman H. K. Stimulation of human prostatic carcinoma tumor growth in athymic mice and control of migration in culture by extracellular matrix. Int J Cancer. 1992 May 8;51(2):318–324. doi: 10.1002/ijc.2910510224. [DOI] [PubMed] [Google Scholar]
  23. Pretlow T. G., Delmoro C. M., Dilley G. G., Spadafora C. G., Pretlow T. P. Transplantation of human prostatic carcinoma into nude mice in Matrigel. Cancer Res. 1991 Jul 15;51(14):3814–3817. [PubMed] [Google Scholar]
  24. Roberts A. B., Sporn M. B. Transforming growth factor beta. Adv Cancer Res. 1988;51:107–145. [PubMed] [Google Scholar]
  25. Sweeney T. M., Kibbey M. C., Zain M., Fridman R., Kleinman H. K. Basement membrane and the SIKVAV laminin-derived peptide promote tumor growth and metastases. Cancer Metastasis Rev. 1991 Oct;10(3):245–254. doi: 10.1007/BF00050795. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES