Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1986 Jan;122(1):160–168.

Platelet interaction with a pancreatic ascites tumor.

J Hamilton, V Subbarao, K Granack, C Ts'ao
PMCID: PMC1888121  PMID: 3510553

Abstract

The mechanism leading to the hypercoagulability in pancreatic carcinoma is unclear. The rapid progress of the disease after its diagnosis and the inaccessibility of the tumor make studies on the mechanism difficult in man. With the successful induction of this malignancy and conversion of it into an ascites tumor in Syrian golden hamsters, interactions between isolated tumor cells and individual hemostatic components can be investigated. In this paper, studies on in vitro tumor cell-platelet interactions and some hemostatic changes in hamsters following intravenous injection of isolated tumor cells are described. Freshly isolated tumor cells and tumor-cell sonicates, but not those that had been kept at 4 or -70 C overnight, induced comparable aggregation of human platelets in both heparinized and citrated platelet-rich plasmas (hPRP and cPRP). The aggregation was not followed by clot formation; a specific synthetic thrombin inhibitor had no effect on the aggregation in either hPRP or cPRP. Washed and gel-filtered platelets, even in the presence of 5% of citrated or heparinized platelet-poor plasma (cPPP or hPPP) failed to be aggregated by tumor cells. Tumor-cell-induced platelet aggregation was accompanied by thromboxane formation and serotonin release, both of which were several orders of magnitude greater in cPPP than in hPRP. Aspirin, apyrase, and PGI2 all inhibited tumor-cell-induced platelet aggregation in both PRPs, but the inhibition by aspirin was minimal. Intravenous infusion of isolated tumor cells into normal hamsters resulted in a 50% reduction of platelet count and a 20-30% decline in antithrombin III and fibrinogen. Platelet aggregates and fibrin strands were seen in the lungs of these animals.

Full text

PDF
163

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Mondhiry H. Tumor interaction with hemostasis: the rationale for the use of platelet inhibitors and anticoagulants in the treatment of cancer. Am J Hematol. 1984 Feb;16(2):193–202. doi: 10.1002/ajh.2830160213. [DOI] [PubMed] [Google Scholar]
  2. Bastida E., Ordinas A., Giardina S. L., Jamieson G. A. Differentiation of platelet-aggregating effects of human tumor cell lines based on inhibition studies with apyrase, hirudin, and phospholipase. Cancer Res. 1982 Nov;42(11):4348–4352. [PubMed] [Google Scholar]
  3. Bastida E., Ordinas A., Jamieson G. A. Differing platelet aggregating effects by two tumor cell lines: absence of role for platelet-derived ADP. Am J Hematol. 1981 Dec;11(4):367–378. doi: 10.1002/ajh.2830110405. [DOI] [PubMed] [Google Scholar]
  4. Becich M. J., Reddy J. K. Separation and characterization of neoplastic cell subpopulations of a transplantable rat pancreatic acinar carcinoma. Cancer Res. 1982 Sep;42(9):3729–3740. [PubMed] [Google Scholar]
  5. CLAUSS A. Gerinnungsphysiologische Schnellmethode zur Bestimmung des Fibrinogens. Acta Haematol. 1957 Apr;17(4):237–246. doi: 10.1159/000205234. [DOI] [PubMed] [Google Scholar]
  6. Cavanaugh P. G., Sloane B. F., Bajkowski A. S., Taylor J. D., Honn K. V. Purification and characterization of platelet aggregating activity from tumor cells: copurification with procoagulant activity. Thromb Res. 1985 Jan 15;37(2):309–326. doi: 10.1016/0049-3848(85)90019-2. [DOI] [PubMed] [Google Scholar]
  7. Gasic G. J., Boettiger D., Catalfamo J. L., Gasic T. B., Stewart G. J. Aggregation of platelets and cell membrane vesiculation by rat cells transformed in vitro by Rous sarcoma virus. Cancer Res. 1978 Sep;38(9):2950–2955. [PubMed] [Google Scholar]
  8. Gasic G. J., Gasic T. B., Galanti N., Johnson T., Murphy S. Platelet-tumor-cell interactions in mice. The role of platelets in the spread of malignant disease. Int J Cancer. 1973 May;11(3):704–718. doi: 10.1002/ijc.2910110322. [DOI] [PubMed] [Google Scholar]
  9. Gasic G. J., Gasic T. B., Jimenez S. A. Platelet aggregating material in mouse tumor cells. Removal and regeneration. Lab Invest. 1977 Apr;36(4):413–419. [PubMed] [Google Scholar]
  10. Gasic G. J., Koch P. A., Hsu B., Gasic T. B., Niewiarowski S. Thrombogenic activity of mouse and human tumors: effects on platelets, coagulation, and fibrinolysis, and possible significance for metastases. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol. 1976 Aug 30;86(3):263–277. doi: 10.1007/BF00286945. [DOI] [PubMed] [Google Scholar]
  11. Gastpar H. Platelet-cancer cell interaction in metastasis formation: a possible therapeutic approcach to metastasis prophylaxis. J Med. 1977;8(2):103–114. [PubMed] [Google Scholar]
  12. Green D., Dunne B., Schmid F. R., Rossi E. C., Louis G. A study of the variable response of human platelets to collagen: relation to aspirin-induced inhibition of aggregation. Am J Clin Pathol. 1973 Dec;60(6):920–926. doi: 10.1093/ajcp/60.6.920. [DOI] [PubMed] [Google Scholar]
  13. Green D., Ts'ao C., Reynolds N., Kahn D., Kohl H., Cohen I. In vitro studies of a new synthetic thrombin inhibitor. Thromb Res. 1985 Jan 1;37(1):145–153. doi: 10.1016/0049-3848(85)90041-6. [DOI] [PubMed] [Google Scholar]
  14. Grignani G., Pacchiarini L., Almasio P., Pagliarino M., Gamba G. Activation of platelet prostaglandin biosynthesis pathway during neoplastic cell-induced platelet aggregation. Thromb Res. 1984 Apr 15;34(2):147–157. doi: 10.1016/0049-3848(84)90071-9. [DOI] [PubMed] [Google Scholar]
  15. Hara Y., Steiner M., Baldini M. G. Characterization of the platelet-aggregating activity of tumor cells. Cancer Res. 1980 Apr;40(4):1217–1222. [PubMed] [Google Scholar]
  16. Hilgard P. The role of blood platelets in experimental metastases. Br J Cancer. 1973 Nov;28(5):429–435. doi: 10.1038/bjc.1973.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Honn K. V., Cicone B., Skoff A. Prostacyclin: a potent antimetastatic agent. Science. 1981 Jun 12;212(4500):1270–1272. doi: 10.1126/science.7015512. [DOI] [PubMed] [Google Scholar]
  18. Honn K. V. Inhibition of tumor cell metastasis by modulation of the vascular prostacyclin/thromboxane A2 system. Clin Exp Metastasis. 1983 Apr-Jun;1(2):103–114. doi: 10.1007/BF00121490. [DOI] [PubMed] [Google Scholar]
  19. Jarrett M. P., Green D., Ts'ao C. H. Relation between antithrombin III and clinical and serological parameters in systemic lupus erythematosus. J Clin Pathol. 1983 Mar;36(3):357–360. doi: 10.1136/jcp.36.3.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jerushalmy Z., Zucker M. B. Some effects of fibrinogen degradation products (FDP) on blood platelets. Thromb Diath Haemorrh. 1966 May 15;15(3):413–419. [PubMed] [Google Scholar]
  21. Karpatkin S., Ambrogio C., Pearlstein E. Lack of effect of in vivo prostacyclin on the development of pulmonary metastases in mice following intravenous injection of CT26 colon carcinoma, Lewis lung carcinoma, or B16 amelanotic melanoma cells. Cancer Res. 1984 Sep;44(9):3880–3883. [PubMed] [Google Scholar]
  22. Karpatkin S., Pearlstein E. Role of platelets in tumor cell metastases. Ann Intern Med. 1981 Nov;95(5):636–641. doi: 10.7326/0003-4819-95-5-636. [DOI] [PubMed] [Google Scholar]
  23. Karpatkin S., Smerling A., Pearlstein E. Plasma requirement for the aggregation of rabbit platelets by an aggregating material derived from SV40-transformed 3T3 fibroblasts. J Lab Clin Med. 1980 Dec;96(6):994–1001. [PubMed] [Google Scholar]
  24. Lages B., Scrutton M. C., Holmsen H. Studies on gel-filtered human platelets: isolation and characterization in a medium containing no added Ca2+, Mg2+, or K+. J Lab Clin Med. 1975 May;85(5):811–825. [PubMed] [Google Scholar]
  25. Lerner W. A., Pearlstein E., Ambrogio C., Karpatkin S. A new mechanism for tumor induced platelet aggregation. Comparison with mechanisms shared by other tumor with possible pharmacologic strategy toward prevention of metastases. Int J Cancer. 1983 Apr 15;31(4):463–469. doi: 10.1002/ijc.2910310411. [DOI] [PubMed] [Google Scholar]
  26. Macfarlane D. E., Walsh P. N., Mills D. C., Holmsen H., Day H. J. The role of thrombin in ADP-induced platelet aggregation and release: a critical evaluation. Br J Haematol. 1975 Aug;30(4):457–463. doi: 10.1111/j.1365-2141.1975.tb01860.x. [DOI] [PubMed] [Google Scholar]
  27. Markus G. The role of hemostasis and fibrinolysis in the metastatic spread of cancer. Semin Thromb Hemost. 1984 Jan;10(1):61–70. doi: 10.1055/s-2007-1004408. [DOI] [PubMed] [Google Scholar]
  28. Mehta P. Potential role of platelets in the pathogenesis of tumor metastasis. Blood. 1984 Jan;63(1):55–63. [PubMed] [Google Scholar]
  29. Menter D. G., Onoda J. M., Taylor J. D., Honn K. V. Effects of prostacyclin on tumor cell-induced platelet aggregation. Cancer Res. 1984 Feb;44(2):450–456. [PubMed] [Google Scholar]
  30. Mohanty D., Hilgard P. A new platelet aggregating material (PAM) in an experimentally induced rat fibrosarcoma. Thromb Haemost. 1984 Apr 30;51(2):192–195. [PubMed] [Google Scholar]
  31. Mustard J. F., Perry D. W., Kinlough-Rathbone R. L., Packham M. A. Factors responsible for ADP-induced release reaction of human platelets. Am J Physiol. 1975 Jun;228(6):1757–1765. doi: 10.1152/ajplegacy.1975.228.6.1757. [DOI] [PubMed] [Google Scholar]
  32. Okamoto S., Hijikata A., Kikumoto R., Tonomura S., Hara H., Ninomiya K., Maruyama A., Sugano M., Tamao Y. Potent inhibition of thrombin by the newly synthesized arginine derivative No. 805. The importance of stereo-structure of its hydrophobic carboxamide portion. Biochem Biophys Res Commun. 1981 Jul 30;101(2):440–446. doi: 10.1016/0006-291x(81)91279-1. [DOI] [PubMed] [Google Scholar]
  33. Pearlstein E., Ambrogio C., Gasic G., Karpatkin S. Inhibition of the platelet-aggregating activity of two human adenocarcinomas of the colon and an anaplastic murine tumor with a specific thrombin inhibitor, dansylarginine N-(3-ethyl-1,5-pentanediyl)amide. Cancer Res. 1981 Nov;41(11 Pt 1):4535–4539. [PubMed] [Google Scholar]
  34. Pearlstein E., Ambrogio C., Karpatkin S. Effect of antiplatelet antibody on the development of pulmonary metastases following injection of CT26 colon adenocarcinoma, Lewis lung carcinoma, and B16 amelanotic melanoma tumor cells into mice. Cancer Res. 1984 Sep;44(9):3884–3887. [PubMed] [Google Scholar]
  35. Pearlstein E., Cooper L. B., Karpatkin S. Extraction and characterization of a platelet-aggregating material from SV40-transformed mouse 3T3 fibroblasts. J Lab Clin Med. 1979 Feb;93(2):332–344. [PubMed] [Google Scholar]
  36. Pearlstein E., Salk P. L., Yogeeswaran G., Karpatkin S. Correlation between spontaneous metastatic potential, platelet-aggregating activity of cell surface extracts, and cell surface sialylation in 10 metastatic-variant derivatives of a rat renal sarcoma cell line. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4336–4339. doi: 10.1073/pnas.77.7.4336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rossi E. C. The effect of albumin upon the loss of enzymes from washed platelets. J Lab Clin Med. 1972 Feb;79(2):240–246. [PubMed] [Google Scholar]
  38. Sack G. H., Jr, Levin J., Bell W. R. Trousseau's syndrome and other manifestations of chronic disseminated coagulopathy in patients with neoplasms: clinical, pathophysiologic, and therapeutic features. Medicine (Baltimore) 1977 Jan;56(1):1–37. [PubMed] [Google Scholar]
  39. Scarpelli D. G., Rao M. S. Transplantable ductal adenocarcinoma of the Syrian hamster pancreas. Cancer Res. 1979 Feb;39(2 Pt 1):452–458. [PubMed] [Google Scholar]
  40. Tangen O., Lestrup E. B., Berman H. J. Characterization of clotting factors associated with blood platelets after gel filtration. Thromb Diath Haemorrh. 1973 Nov;30(2):289–298. [PubMed] [Google Scholar]
  41. Tohgo A., Tanaka N., Ashida S., Ogawa H. Platelet-aggregating activities of metastasizing tumor cells. II. Variety of the aggregation mechanisms. Invasion Metastasis. 1984;4(3):134–145. [PubMed] [Google Scholar]
  42. Ts'ao C. H., Wirman J. A., Ruder E. A. Altered in vitro functions of platelets prepared by the Haemonetics blood processor. J Lab Clin Med. 1975 Aug;86(2):315–325. [PubMed] [Google Scholar]
  43. Wu K. K., Hoak J. C. A new method for the quantitative detection of platelet aggregates in patients with arterial insufficiency. Lancet. 1974 Oct 19;2(7886):924–926. doi: 10.1016/s0140-6736(74)91131-3. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES