Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1986 Apr;123(1):95–99.

Cigarette smoke increases the penetration of asbestos fibers into airway walls.

D McFadden, J Wright, B Wiggs, A Churg
PMCID: PMC1888165  PMID: 3963152

Abstract

For study of the penetration of asbestos fibers into airway walls, guinea pigs were given amosite asbestos by intratracheal instillation. Half of the animals were also exposed to cigarette smoke. Animals were sacrificed at 1 week and 1 month, and numbers of fibers in airway walls were counted in histologic sections. In both smoke-exposed and nonexposed groups, numbers of fibers per square millimeter of airway wall increased from 1 week to 1 month in the respiratory bronchioles. At each time period, smoke-exposed animals had significantly higher numbers of fibers in the airway walls, compared with nonexposed animals. It is concluded that 1) continued transport of fibers into interstitial tissues may be the reason that asbestosis can progress after cessation of exposure; 2) cigarette smoke increases the penetration of fibers into airway walls. This effect may play a role in the increased incidence of disease seen in smoking, compared with nonsmoking, asbestos workers.

Full text

PDF
98

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson I. Y., Bowden D. H. Dose response of the pulmonary macrophagic system to various particulates and its relationship to transepithelial passage of free particles. Exp Lung Res. 1981 Aug;2(3):165–175. doi: 10.3109/01902148109052312. [DOI] [PubMed] [Google Scholar]
  2. Akematsu T., Dodson R. F., Williams M. G., Jr, Hurst G. A. The short-term effects of volcanic ash on the small airways of the respiratory system. Environ Res. 1982 Dec;29(2):358–370. doi: 10.1016/0013-9351(82)90037-8. [DOI] [PubMed] [Google Scholar]
  3. Barry B. E., Wong K. C., Brody A. R., Crapo J. D. Reaction of rat lungs to inhaled chrysotile asbestos following acute and subchronic exposures. Exp Lung Res. 1983 Jul;5(1):1–21. doi: 10.3109/01902148309061501. [DOI] [PubMed] [Google Scholar]
  4. Becklake M. R., Liddell F. D., Manfreda J., McDonald J. C. Radiological changes after withdrawal from asbestos exposure. Br J Ind Med. 1979 Feb;36(1):23–28. doi: 10.1136/oem.36.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brain J. D., Knudson D. E., Sorokin S. P., Davis M. A. Pulmonary distribution of particles given by intratracheal instillation or by aerosol inhalation. Environ Res. 1976 Feb;11(1):13–33. doi: 10.1016/0013-9351(76)90107-9. [DOI] [PubMed] [Google Scholar]
  6. Brain J. D. Macrophage damage in relation to the pathogenesis of lung diseases. Environ Health Perspect. 1980 Apr;35:21–28. doi: 10.1289/ehp.803521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brody A. R., Hill L. H., Adkins B., Jr, O'Connor R. W. Chrysotile asbestos inhalation in rats: deposition pattern and reaction of alveolar epithelium and pulmonary macrophages. Am Rev Respir Dis. 1981 Jun;123(6):670–679. doi: 10.1164/arrd.1981.123.6.670. [DOI] [PubMed] [Google Scholar]
  8. Brody A. R., Roe M. W., Evans J. N., Davis G. S. Deposition and translocation of inhaled silica in rats. Quantification of particle distribution, macrophage participation, and function. Lab Invest. 1982 Dec;47(6):533–542. [PubMed] [Google Scholar]
  9. Brody A. R., Warheit D. B., Chang L. Y., Roe M. W., George G., Hill L. H. Initial deposition pattern of inhaled minerals and consequent pathogenic events at the alveolar level. Ann N Y Acad Sci. 1984;428:108–120. doi: 10.1111/j.1749-6632.1984.tb12288.x. [DOI] [PubMed] [Google Scholar]
  10. Dodson R. F., Akematsu T., Williams M. G., Jr, Ford J. O., Hurst G. A. The influence of amosite asbestos exposure on lung permeability. Environ Res. 1984 Dec;35(2):497–506. doi: 10.1016/0013-9351(84)90156-7. [DOI] [PubMed] [Google Scholar]
  11. Filipenko D., Wright J. L., Churg A. Pathologic changes in the small airways of the guinea pig after amosite asbestos exposure. Am J Pathol. 1985 May;119(2):273–278. [PMC free article] [PubMed] [Google Scholar]
  12. Gore D. J., Patrick G. A quantitative study of the penetration of insoluble particles into the tissue of the conducting airways. Ann Occup Hyg. 1982;26(1-4):149–161. [PubMed] [Google Scholar]
  13. Hammond E. C., Selikoff I. J., Seidman H. Asbestos exposure, cigarette smoking and death rates. Ann N Y Acad Sci. 1979;330:473–490. doi: 10.1111/j.1749-6632.1979.tb18749.x. [DOI] [PubMed] [Google Scholar]
  14. Hulbert W. C., Walker D. C., Jackson A., Hogg J. C. Airway permeability to horseradish peroxidase in guinea pigs: the repair phase after injury by cigarette smoke. Am Rev Respir Dis. 1981 Mar;123(3):320–326. doi: 10.1164/arrd.1981.123.3.320. [DOI] [PubMed] [Google Scholar]
  15. Lai Y. L., Lamm W. J., Luchtel D. L., Hildebrandt J. Massive postmortem bronchoconstriction in guinea pig lungs. J Appl Physiol Respir Environ Exerc Physiol. 1984 Feb;56(2):308–314. doi: 10.1152/jappl.1984.56.2.308. [DOI] [PubMed] [Google Scholar]
  16. Langston C., Waszkiewicz E., Thurlbeck W. M. A simple method for the representative sampling of lungs of diverse size. Thorax. 1979 Aug;34(4):527–530. doi: 10.1136/thx.34.4.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mossman B. T., Eastman A., Landesman J. M., Bresnick E. Effects of crocidolite and chrysotile asbestos on cellular uptake and metabolism of benzo(a)pyrene in hamster tracheal epithelial cells. Environ Health Perspect. 1983 Sep;51:331–335. doi: 10.1289/ehp.8351331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mossman B. T., Kessler J. B., Ley B. W., Craighead J. E. Interaction of crocidolite asbestos with hamster respiratory mucosa in organ culture. Lab Invest. 1977 Feb;36(2):131–139. [PubMed] [Google Scholar]
  19. Pinkerton K. E., Pratt P. C., Brody A. R., Crapo J. D. Fiber localization and its relationship to lung reaction in rats after chronic inhalation of chrysotile asbestos. Am J Pathol. 1984 Dec;117(3):484–498. [PMC free article] [PubMed] [Google Scholar]
  20. Pritchard J. N., Holmes A., Evans J. C., Evans N., Evans R. J., Morgan A. The distribution of dust in the rat lung following administration by inhalation and by single intratracheal instillation. Environ Res. 1985 Apr;36(2):268–297. doi: 10.1016/0013-9351(85)90025-8. [DOI] [PubMed] [Google Scholar]
  21. Simani A. S., Inoue S., Hogg J. C. Penetration of the respiratory epithelium of guinea pigs following exposure to cigarette smoke. Lab Invest. 1974 Jul;31(1):75–81. [PubMed] [Google Scholar]
  22. Sorokin S. P., Brain J. D. Pathways of clearance in mouse lungs exposed to iron oxide aerosols. Anat Rec. 1975 Mar;181(3):581–625. doi: 10.1002/ar.1091810304. [DOI] [PubMed] [Google Scholar]
  23. Viallat J. R., Boutin C., Pietri J. F., Fondarai J. Late progression of radiographic changes in Canari chrysotile mine and mill exworkers. Arch Environ Health. 1983 Jan-Feb;38(1):54–58. doi: 10.1080/00039896.1983.10543979. [DOI] [PubMed] [Google Scholar]
  24. Weiss W. Cigarette smoke, asbestos, and small irregular opacities. Am Rev Respir Dis. 1984 Aug;130(2):293–301. doi: 10.1164/arrd.1984.130.2.293. [DOI] [PubMed] [Google Scholar]
  25. Wright J. L., Churg A. Severe diffuse small airways abnormalities in long term chrysotile asbestos miners. Br J Ind Med. 1985 Aug;42(8):556–559. doi: 10.1136/oem.42.8.556. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES