Abstract
Endpoint immunoglobulin G (IgG) titers and cytotoxic T-lymphocyte (CTL) activities were identical between mice immunized via the intramuscular and epidermal (gene gun) routes with 100 and 1 micrograms, respectively, of an influenza virus nucleoprotein (NP) expression vector. However, examination of the relative levels of two IgG subclasses demonstrated that muscle inoculation resulted in predominantly IgG2a responses, whereas gene gun immunization yielded a preponderance of IgG1 antibodies. Inasmuch as these data suggested that muscle inoculation and gene gun delivery elicited Th1-like and Th2-like responses, respectively, gamma interferon release profiles from antigen-stimulated splenocytes were remarkably similar between these groups. Interleukin-4 (IL-4) production assays, on the other hand, revealed qualitative differences that could be correlated with the divergent IgG subclass data. Waning gamma interferon production in gene gun-immunized animals was countered by a marked increase in IL-4 production following the third immunization, as was the case in control animals immunized with inactivated influenza virus formulated with Freund's adjuvant. In contrast, significant levels of IL-4 production were not observed in the intramuscular DNA inoculation group, despite similar decreases in gamma interferon production with increasing immunizations. These data show that intramuscular inoculation leads to Th1-like responses due to elevated IgG2a levels, production of gamma interferon, CTL activity, and lack of IL-4. However, gene gun responses are more difficult to categorize because of the presence of significant gamma interferon and CTL activity on the one hand and elevated IgG1 antibodies and increasing IL-4 production with successive immunizations on the other. In addition, there was a lack of correlation between IgG isotype ratios and cytokine production in all of the NP DNA-immunized animals, in that IgG subclass ratios remained fixed while cytokine production patterns fluctuated with successive immunizations. These data are consistent with the idea that the types of responses elicited following DNA immunization. are dependent on both the identity of the antigen and the route of DNA administration.
Full Text
The Full Text of this article is available as a PDF (217.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bos J. D., Kapsenberg M. L. The skin immune system: progress in cutaneous biology. Immunol Today. 1993 Feb;14(2):75–78. doi: 10.1016/0167-5699(93)90062-P. [DOI] [PubMed] [Google Scholar]
- Conry R. M., LoBuglio A. F., Wright M., Sumerel L., Pike M. J., Johanning F., Benjamin R., Lu D., Curiel D. T. Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. 1995 Apr 1;55(7):1397–1400. [PubMed] [Google Scholar]
- Cox G. J., Zamb T. J., Babiuk L. A. Bovine herpesvirus 1: immune responses in mice and cattle injected with plasmid DNA. J Virol. 1993 Sep;67(9):5664–5667. doi: 10.1128/jvi.67.9.5664-5667.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis H. L., Michel M. L., Mancini M., Schleef M., Whalen R. G. Direct gene transfer in skeletal muscle: plasmid DNA-based immunization against the hepatitis B virus surface antigen. Vaccine. 1994 Dec;12(16):1503–1509. doi: 10.1016/0264-410x(94)90073-6. [DOI] [PubMed] [Google Scholar]
- Davis H. L., Michel M. L., Whalen R. G. DNA-based immunization induces continuous secretion of hepatitis B surface antigen and high levels of circulating antibody. Hum Mol Genet. 1993 Nov;2(11):1847–1851. doi: 10.1093/hmg/2.11.1847. [DOI] [PubMed] [Google Scholar]
- Donnelly J. J., Friedman A., Martinez D., Montgomery D. L., Shiver J. W., Motzel S. L., Ulmer J. B., Liu M. A. Preclinical efficacy of a prototype DNA vaccine: enhanced protection against antigenic drift in influenza virus. Nat Med. 1995 Jun;1(6):583–587. doi: 10.1038/nm0695-583. [DOI] [PubMed] [Google Scholar]
- Eisenbraun M. D., Fuller D. H., Haynes J. R. Examination of parameters affecting the elicitation of humoral immune responses by particle bombardment-mediated genetic immunization. DNA Cell Biol. 1993 Nov;12(9):791–797. doi: 10.1089/dna.1993.12.791. [DOI] [PubMed] [Google Scholar]
- Finkelman F. D., Katona I. M., Mosmann T. R., Coffman R. L. IFN-gamma regulates the isotypes of Ig secreted during in vivo humoral immune responses. J Immunol. 1988 Feb 15;140(4):1022–1027. [PubMed] [Google Scholar]
- Fuller D. H., Haynes J. R. A qualitative progression in HIV type 1 glycoprotein 120-specific cytotoxic cellular and humoral immune responses in mice receiving a DNA-based glycoprotein 120 vaccine. AIDS Res Hum Retroviruses. 1994 Nov;10(11):1433–1441. doi: 10.1089/aid.1994.10.1433. [DOI] [PubMed] [Google Scholar]
- Fynan E. F., Webster R. G., Fuller D. H., Haynes J. R., Santoro J. C., Robinson H. L. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11478–11482. doi: 10.1073/pnas.90.24.11478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mamula M. J., Janeway C. A., Jr Do B cells drive the diversification of immune responses? Immunol Today. 1993 Apr;14(4):151–154. doi: 10.1016/0167-5699(93)90274-O. [DOI] [PubMed] [Google Scholar]
- Martins L. P., Lau L. L., Asano M. S., Ahmed R. DNA vaccination against persistent viral infection. J Virol. 1995 Apr;69(4):2574–2582. doi: 10.1128/jvi.69.4.2574-2582.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michel M. L., Davis H. L., Schleef M., Mancini M., Tiollais P., Whalen R. G. DNA-mediated immunization to the hepatitis B surface antigen in mice: aspects of the humoral response mimic hepatitis B viral infection in humans. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5307–5311. doi: 10.1073/pnas.92.12.5307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mor G., Klinman D. M., Shapiro S., Hagiwara E., Sedegah M., Norman J. A., Hoffman S. L., Steinberg A. D. Complexity of the cytokine and antibody response elicited by immunizing mice with Plasmodium yoelii circumsporozoite protein plasmid DNA. J Immunol. 1995 Aug 15;155(4):2039–2046. [PubMed] [Google Scholar]
- Mosmann T. R., Coffman R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–173. doi: 10.1146/annurev.iy.07.040189.001045. [DOI] [PubMed] [Google Scholar]
- Pertmer T. M., Eisenbraun M. D., McCabe D., Prayaga S. K., Fuller D. H., Haynes J. R. Gene gun-based nucleic acid immunization: elicitation of humoral and cytotoxic T lymphocyte responses following epidermal delivery of nanogram quantities of DNA. Vaccine. 1995;13(15):1427–1430. doi: 10.1016/0264-410x(95)00069-d. [DOI] [PubMed] [Google Scholar]
- Raz E., Carson D. A., Parker S. E., Parr T. B., Abai A. M., Aichinger G., Gromkowski S. H., Singh M., Lew D., Yankauckas M. A. Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9519–9523. doi: 10.1073/pnas.91.20.9519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson H. L., Hunt L. A., Webster R. G. Protection against a lethal influenza virus challenge by immunization with a haemagglutinin-expressing plasmid DNA. Vaccine. 1993;11(9):957–960. doi: 10.1016/0264-410x(93)90385-b. [DOI] [PubMed] [Google Scholar]
- Ron Y., Sprent J. T cell priming in vivo: a major role for B cells in presenting antigen to T cells in lymph nodes. J Immunol. 1987 May 1;138(9):2848–2856. [PubMed] [Google Scholar]
- Rötzschke O., Falk K., Deres K., Schild H., Norda M., Metzger J., Jung G., Rammensee H. G. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature. 1990 Nov 15;348(6298):252–254. doi: 10.1038/348252a0. [DOI] [PubMed] [Google Scholar]
- Sedegah M., Hedstrom R., Hobart P., Hoffman S. L. Protection against malaria by immunization with plasmid DNA encoding circumsporozoite protein. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9866–9870. doi: 10.1073/pnas.91.21.9866. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snapper C. M., Paul W. E. Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science. 1987 May 22;236(4804):944–947. doi: 10.1126/science.3107127. [DOI] [PubMed] [Google Scholar]
- Stingl G. Dendritic cells of the skin. Dermatol Clin. 1990 Oct;8(4):673–679. [PubMed] [Google Scholar]
- Stingl G., Tschachler E., Groh V., Wolff K., Hauser C. The immune functions of epidermal cells. Immunol Ser. 1989;46:3–72. [PubMed] [Google Scholar]
- Tang D. C., DeVit M., Johnston S. A. Genetic immunization is a simple method for eliciting an immune response. Nature. 1992 Mar 12;356(6365):152–154. doi: 10.1038/356152a0. [DOI] [PubMed] [Google Scholar]
- Ulmer J. B., Donnelly J. J., Parker S. E., Rhodes G. H., Felgner P. L., Dwarki V. J., Gromkowski S. H., Deck R. R., DeWitt C. M., Friedman A. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science. 1993 Mar 19;259(5102):1745–1749. doi: 10.1126/science.8456302. [DOI] [PubMed] [Google Scholar]
- Wang B., Ugen K. E., Srikantan V., Agadjanyan M. G., Dang K., Refaeli Y., Sato A. I., Boyer J., Williams W. V., Weiner D. B. Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4156–4160. doi: 10.1073/pnas.90.9.4156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe A., Raz E., Kohsaka H., Tighe H., Baird S. M., Kipps T. J., Carson D. A. Induction of antibodies to a kappa V region by gene immunization. J Immunol. 1993 Sep 1;151(5):2871–2876. [PubMed] [Google Scholar]
- Wells D. J. Improved gene transfer by direct plasmid injection associated with regeneration in mouse skeletal muscle. FEBS Lett. 1993 Oct 11;332(1-2):179–182. doi: 10.1016/0014-5793(93)80508-r. [DOI] [PubMed] [Google Scholar]
- Wolff J. A., Malone R. W., Williams P., Chong W., Acsadi G., Jani A., Felgner P. L. Direct gene transfer into mouse muscle in vivo. Science. 1990 Mar 23;247(4949 Pt 1):1465–1468. doi: 10.1126/science.1690918. [DOI] [PubMed] [Google Scholar]
- Xiang Z., Ertl H. C. Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines. Immunity. 1995 Feb;2(2):129–135. doi: 10.1016/s1074-7613(95)80001-8. [DOI] [PubMed] [Google Scholar]
- Xu D., Liew F. Y. Protection against leishmaniasis by injection of DNA encoding a major surface glycoprotein, gp63, of L. major. Immunology. 1995 Feb;84(2):173–176. [PMC free article] [PubMed] [Google Scholar]
- Yokoyama M., Zhang J., Whitton J. L. DNA immunization confers protection against lethal lymphocytic choriomeningitis virus infection. J Virol. 1995 Apr;69(4):2684–2688. doi: 10.1128/jvi.69.4.2684-2688.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zarozinski C. C., Fynan E. F., Selin L. K., Robinson H. L., Welsh R. M. Protective CTL-dependent immunity and enhanced immunopathology in mice immunized by particle bombardment with DNA encoding an internal virion protein. J Immunol. 1995 Apr 15;154(8):4010–4017. [PubMed] [Google Scholar]