Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1992 Aug;106(4):986–995. doi: 10.1111/j.1476-5381.1992.tb14446.x

[3H]-MK 912 binding delineates two alpha 2-adrenoceptor subtypes in rat CNS one of which is identical with the cloned pA2d alpha 2-adrenoceptor.

S Uhlén 1, Y Xia 1, V Chhajlani 1, C C Felder 1, J E Wikberg 1
PMCID: PMC1907663  PMID: 1356570

Abstract

1. Simultaneous computer modelling of control and guanfacine-masked [3H]-MK 912 saturation curves as well as guanfacine competition curves revealed that the drugs bound to two alpha 2-adrenoceptor subtypes in the rat cerebral cortex with very different selectivities. These alpha 2-adrenoceptor subtypes were designated alpha 2A and alpha 2C. The Kd value of [3H]-MK 912 for the alpha 2A-subtype was 1.77 nM and for the alpha 2C-subtype 0.075 nM; the receptor sites showing capacities 296 and 33 fmol mg-1 protein, respectively. The Kds of guanfacine were 19.9 and 344 nM, respectively. 2. Binding constants of 26 compounds for the two rat cerebral cortex alpha 2-adrenoceptor subtypes were determined by simultaneous computer modelling of control and guanfacine-masked drug competition curves as well as plain guanfacine competition curves using [3H]-MK912 as labelled ligand (i.e. a '3-curve assay'). Of the tested drugs WB4101, corynanthine, rauwolscine, yohimbine, ARC 239 and prazosin were found to be clearly alpha 2C-selective with selectivities ranging from 16 to 30 fold whereas guanfacine, oxymetazoline, BRL 44408 and BRL 41992 were found to be alpha 2A-selective with selectivities ranging from 9 to 22 fold. 3. The Kds of compounds obtained for the cerebral cortex alpha 2C-adrenoceptors showed an almost 1:1 correlation with the corresponding Kds for alpha 2-adrenoceptors expressed by the pA2d-gene (the rat 'alpha 2-C4' adrenoceptor) in CHO-cells. The cerebral cortex alpha 2A-adrenoceptors did not correlate well with the pA2d alpha 2-adrenoceptor Kds. 4. In the rat spinal cord [3H]-MK 912 bound to alpha 2A- and alpha 2C-adrenoceptor sites with similar affinities as in the cerebral cortex and with densities 172 and 7.4 fmol mg-1 protein, respectively. Drug affinities for some compounds showing major selectivity for alpha 2A- and alpha 2C-adrenoceptors were fully compatible with the notion that the spinal cord sites were alpha 2A- and alpha 2C-adrenoceptors.

Full text

PDF
991

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergström A., Wikberg J. E. Structural and pharmacological differences between codfish and rat brain alpha 1-adrenergic receptors revealed by photoaffinity labeling with 125I-APDQ. Acta Pharmacol Toxicol (Copenh) 1986 Feb;58(2):148–155. doi: 10.1111/j.1600-0773.1986.tb00085.x. [DOI] [PubMed] [Google Scholar]
  2. Berthelsen S., Pettinger W. A. A functional basis for classification of alpha-adrenergic receptors. Life Sci. 1977 Sep 1;21(5):595–606. doi: 10.1016/0024-3205(77)90066-2. [DOI] [PubMed] [Google Scholar]
  3. Blaxall H. S., Murphy T. J., Baker J. C., Ray C., Bylund D. B. Characterization of the alpha-2C adrenergic receptor subtype in the opossum kidney and in the OK cell line. J Pharmacol Exp Ther. 1991 Oct;259(1):323–329. [PubMed] [Google Scholar]
  4. Broadhurst A. M., Alexander B. S., Wood M. D. Heterogeneous 3H-rauwolscine binding sites in rat cortex: two alpha 2-adrenoceptor subtypes or an additional non-adrenergic interaction? Life Sci. 1988;43(1):83–92. doi: 10.1016/0024-3205(88)90240-8. [DOI] [PubMed] [Google Scholar]
  5. Brown C. M., MacKinnon A. C., McGrath J. C., Spedding M., Kilpatrick A. T. Heterogeneity of alpha 2-adrenoceptors in rat cortex but not human platelets can be defined by 8-OH-DPAT, RU 24969 and methysergide. Br J Pharmacol. 1990 Mar;99(3):481–486. doi: 10.1111/j.1476-5381.1990.tb12954.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bylund D. B. Heterogeneity of alpha-2 adrenergic receptors. Pharmacol Biochem Behav. 1985 May;22(5):835–843. doi: 10.1016/0091-3057(85)90536-2. [DOI] [PubMed] [Google Scholar]
  7. Bylund D. B., Ray-Prenger C., Murphy T. J. Alpha-2A and alpha-2B adrenergic receptor subtypes: antagonist binding in tissues and cell lines containing only one subtype. J Pharmacol Exp Ther. 1988 May;245(2):600–607. [PubMed] [Google Scholar]
  8. Chalberg S. C., Duda T., Rhine J. A., Sharma R. K. Molecular cloning, sequencing and expression of an alpha 2-adrenergic receptor complementary DNA from rat brain. Mol Cell Biochem. 1990 Sep 21;97(2):161–172. doi: 10.1007/BF00221058. [DOI] [PubMed] [Google Scholar]
  9. Harrison J. K., D'Angelo D. D., Zeng D. W., Lynch K. R. Pharmacological characterization of rat alpha 2-adrenergic receptors. Mol Pharmacol. 1991 Sep;40(3):407–412. [PubMed] [Google Scholar]
  10. Harrison J. K., Pearson W. R., Lynch K. R. Molecular characterization of alpha 1- and alpha 2-adrenoceptors. Trends Pharmacol Sci. 1991 Feb;12(2):62–67. doi: 10.1016/0165-6147(91)90499-i. [DOI] [PubMed] [Google Scholar]
  11. Hoffman B. B., Michel T., Brenneman T. B., Lefkowitz R. J. Interactions of agonists with platelet alpha 2-adrenergic receptors. Endocrinology. 1982 Mar;110(3):926–932. doi: 10.1210/endo-110-3-926. [DOI] [PubMed] [Google Scholar]
  12. Hoffman B. B., Michel T., Kilpatrick D. M., Lefkowitz R. J., Tolbert M. E., Gilman H., Fain J. N. Agonist versus antagonist binding to alpha-adrenergic receptors. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4569–4573. doi: 10.1073/pnas.77.8.4569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horstman D. A., Brandon S., Wilson A. L., Guyer C. A., Cragoe E. J., Jr, Limbird L. E. An aspartate conserved among G-protein receptors confers allosteric regulation of alpha 2-adrenergic receptors by sodium. J Biol Chem. 1990 Dec 15;265(35):21590–21595. [PubMed] [Google Scholar]
  14. Kobilka B. K., Matsui H., Kobilka T. S., Yang-Feng T. L., Francke U., Caron M. G., Lefkowitz R. J., Regan J. W. Cloning, sequencing, and expression of the gene coding for the human platelet alpha 2-adrenergic receptor. Science. 1987 Oct 30;238(4827):650–656. doi: 10.1126/science.2823383. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Lands A. M., Luduena F. P., Buzzo H. J. Differentiation of receptors responsive to isoproterenol. Life Sci. 1967 Nov 1;6(21):2241–2249. doi: 10.1016/0024-3205(67)90031-8. [DOI] [PubMed] [Google Scholar]
  17. Lanier S. M., Downing S., Duzic E., Homcy C. J. Isolation of rat genomic clones encoding subtypes of the alpha 2-adrenergic receptor. Identification of a unique receptor subtype. J Biol Chem. 1991 Jun 5;266(16):10470–10478. [PubMed] [Google Scholar]
  18. Lomasney J. W., Lorenz W., Allen L. F., King K., Regan J. W., Yang-Feng T. L., Caron M. G., Lefkowitz R. J. Expansion of the alpha 2-adrenergic receptor family: cloning and characterization of a human alpha 2-adrenergic receptor subtype, the gene for which is located on chromosome 2. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5094–5098. doi: 10.1073/pnas.87.13.5094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lorenz W., Lomasney J. W., Collins S., Regan J. W., Caron M. G., Lefkowitz R. J. Expression of three alpha 2-adrenergic receptor subtypes in rat tissues: implications for alpha 2 receptor classification. Mol Pharmacol. 1990 Nov;38(5):599–603. [PubMed] [Google Scholar]
  20. Maura G., Gemignani A., Raiteri M. Alpha 2-adrenoceptors in rat hypothalamus and cerebral cortex: functional evidence for pharmacologically distinct subpopulations. Eur J Pharmacol. 1985 Oct 22;116(3):335–339. doi: 10.1016/0014-2999(85)90173-6. [DOI] [PubMed] [Google Scholar]
  21. Murphy T. J., Bylund D. B. Characterization of alpha-2 adrenergic receptors in the OK cell, an opossum kidney cell line. J Pharmacol Exp Ther. 1988 Feb;244(2):571–578. [PubMed] [Google Scholar]
  22. Pettibone D. J., Flagg S. D., Totaro J. A., Clineschmidt B. V., Huff J. R., Young S. D., Chen R. [3H]L-657,743 (MK-912): a new, high affinity, selective radioligand for brain alpha 2-adrenoceptors. Life Sci. 1989;44(7):459–467. doi: 10.1016/0024-3205(89)90461-x. [DOI] [PubMed] [Google Scholar]
  23. Raiteri M., Maura G., Gemignani A., Pittaluga A. Differential blockade by (-)mianserin of the alpha 2-adrenoceptors mediating inhibition of noradrenaline and serotonin release from rat brain synaptosomes. Naunyn Schmiedebergs Arch Pharmacol. 1983 Mar;322(2):180–182. doi: 10.1007/BF00512394. [DOI] [PubMed] [Google Scholar]
  24. Regan J. W., Kobilka T. S., Yang-Feng T. L., Caron M. G., Lefkowitz R. J., Kobilka B. K. Cloning and expression of a human kidney cDNA for an alpha 2-adrenergic receptor subtype. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6301–6305. doi: 10.1073/pnas.85.17.6301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schloos J., Wellstein A., Palm D. Agonist binding at alpha 2-adrenoceptors of human platelets using 3H-UK-14,304: regulation by Gpp(NH)p and cations. Naunyn Schmiedebergs Arch Pharmacol. 1987 Jul;336(1):48–59. doi: 10.1007/BF00177750. [DOI] [PubMed] [Google Scholar]
  26. Uhlén S., Persson M. L., Alari L., Post C., Axelsson K. L., Wikberg J. E. Antinociceptive actions of alpha 2-adrenoceptor agonists in the rat spinal cord: evidence for antinociceptive alpha 2-adrenoceptor subtypes and dissociation of antinociceptive alpha 2-adrenoceptors from cyclic AMP. J Neurochem. 1990 Dec;55(6):1905–1914. doi: 10.1111/j.1471-4159.1990.tb05775.x. [DOI] [PubMed] [Google Scholar]
  27. Uhlén S., Wikberg J. E. Delineation of rat kidney alpha 2A- and alpha 2B-adrenoceptors with [3H]RX821002 radioligand binding: computer modelling reveals that guanfacine is an alpha 2A-selective compound. Eur J Pharmacol. 1991 Sep 17;202(2):235–243. doi: 10.1016/0014-2999(91)90299-6. [DOI] [PubMed] [Google Scholar]
  28. Uhlén S., Wikberg J. E. Delineation of three pharmacological subtypes of alpha 2-adrenoceptor in the rat kidney. Br J Pharmacol. 1991 Nov;104(3):657–664. doi: 10.1111/j.1476-5381.1991.tb12485.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Uhlén S., Wikberg J. E. Rat spinal cord alpha 2-adrenoceptors are of the alpha 2A-subtype: comparison with alpha 2A- and alpha 2B-adrenoceptors in rat spleen, cerebral cortex and kidney using 3H-RX821002 ligand binding. Pharmacol Toxicol. 1991 Nov;69(5):341–350. doi: 10.1111/j.1600-0773.1991.tb01308.x. [DOI] [PubMed] [Google Scholar]
  30. Voigt M. M., McCune S. K., Kanterman R. Y., Felder C. C. The rat alpha 2-C4 adrenergic receptor gene encodes a novel pharmacological subtype. FEBS Lett. 1991 Jan 14;278(1):45–50. doi: 10.1016/0014-5793(91)80080-m. [DOI] [PubMed] [Google Scholar]
  31. Wikberg J. E. Pharmacological classification of adrenergic alpha receptors in the guinea pig. Nature. 1978 May 11;273(5658):164–166. doi: 10.1038/273164a0. [DOI] [PubMed] [Google Scholar]
  32. Wikberg J. E., Uhlén S. Further characterization of the guinea pig cerebral cortex idazoxan receptor: solubilization, distinction from the imidazole site, and demonstration of cirazoline as an idazoxan receptor-selective drug. J Neurochem. 1990 Jul;55(1):192–203. doi: 10.1111/j.1471-4159.1990.tb08838.x. [DOI] [PubMed] [Google Scholar]
  33. Young P., Berge J., Chapman H., Cawthorne M. A. Novel alpha 2-adrenoceptor antagonists show selectivity for alpha 2A- and alpha 2B-adrenoceptor subtypes. Eur J Pharmacol. 1989 Sep 22;168(3):381–386. doi: 10.1016/0014-2999(89)90801-7. [DOI] [PubMed] [Google Scholar]
  34. Zeng D. W., Harrison J. K., D'Angelo D. D., Barber C. M., Tucker A. L., Lu Z. H., Lynch K. R. Molecular characterization of a rat alpha 2B-adrenergic receptor. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3102–3106. doi: 10.1073/pnas.87.8.3102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zeng D. W., Lynch K. R. Distribution of alpha 2-adrenergic receptor mRNAs in the rat CNS. Brain Res Mol Brain Res. 1991 Jun;10(3):219–225. doi: 10.1016/0169-328x(91)90064-5. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES