Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1992 Nov;107(3):853–857. doi: 10.1111/j.1476-5381.1992.tb14536.x

Blockade of 5-HT3 receptor-mediated currents in dissociated frog sensory neurones by benzoxazine derivative, Y-25130.

T Yakushiji 1, N Akaike 1
PMCID: PMC1907744  PMID: 1472977

Abstract

1. The effect of Y-25130, ((+-)-N-(1-azabicyclo[2.2.2]oct-3-yl)-6-chloro-4-methyl-3-oxo-3,4-dih ydr o- 2H-1,4-benzoxazine-8-carboxamide hydrochloride), a high affinity 5-hydroxytryptamine3 (5-HT3) receptor ligand, was examined on the 5-HT-induced response in dissociated frog dorsal root ganglion (DRG) neurones by use of the extremely rapid concentration-jump ('concentration-clamp') and the conventional whole-cell patch-clamp techniques. 2. 5-HT induced a rapid transient inward current associated with an increase in membrane conductance at a holding potential of -70 mV. The current amplitude increased sigmoidally as 5-HT concentration increased. The half-maximum value (Ka) and the Hill coefficient estimated from the concentration-response curve were 1.7 x 10(-5) M and 1.7, respectively. 3. The current-voltage (I-V) relationship of 5-HT-induced current (I5-HT) showed inward rectification at potentials more positive than -40 mV. The reversal potential (E5-HT) was -11 mV. The E5-HT value was unaffected by total replacement of intracellular K+ by Cs+, indicating that the 5-HT-gated channels might be large cation channels. 4. Both the activation and inactivation phases of I5-HT were single exponentials. The time constants of activation and inactivation (tau a and tau i) decreased with increasing 5-HT concentration. 5. The 5-HT response was mimicked by a selective 5-HT3 receptor agonist, 2-methyl-5-HT, but the maximum response induced was approximately 25% that of 5-HT.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
856

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akaike N., Inoue M., Krishtal O. A. 'Concentration-clamp' study of gamma-aminobutyric-acid-induced chloride current kinetics in frog sensory neurones. J Physiol. 1986 Oct;379:171–185. doi: 10.1113/jphysiol.1986.sp016246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akaike N., Lee K. S., Brown A. M. The calcium current of Helix neuron. J Gen Physiol. 1978 May;71(5):509–531. doi: 10.1085/jgp.71.5.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Akaike N., Tokutomi N., Kijima H. Kinetic analysis of acetylcholine-induced current in isolated frog sympathetic ganglion cells. J Neurophysiol. 1989 Feb;61(2):283–290. doi: 10.1152/jn.1989.61.2.283. [DOI] [PubMed] [Google Scholar]
  4. Akasu T., Hasuo H., Tokimasa T. Activation of 5-HT3 receptor subtypes causes rapid excitation of rabbit parasympathetic neurones. Br J Pharmacol. 1987 Jul;91(3):453–455. doi: 10.1111/j.1476-5381.1987.tb11236.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Derkach V., Surprenant A., North R. A. 5-HT3 receptors are membrane ion channels. Nature. 1989 Jun 29;339(6227):706–709. doi: 10.1038/339706a0. [DOI] [PubMed] [Google Scholar]
  6. Fukuda T., Setoguchi M., Inaba K., Shoji H., Tahara T. The antiemetic profile of Y-25130, a new selective 5-HT3 receptor antagonist. Eur J Pharmacol. 1991 Apr 24;196(3):299–305. doi: 10.1016/0014-2999(91)90443-t. [DOI] [PubMed] [Google Scholar]
  7. Hattori K., Akaike N., Oomura Y., Kuraoka S. Internal perfusion studies demonstrating GABA-induced chloride responses in frog primary afferent neurons. Am J Physiol. 1984 Mar;246(3 Pt 1):C259–C265. doi: 10.1152/ajpcell.1984.246.3.C259. [DOI] [PubMed] [Google Scholar]
  8. Higashi H. 5-hydroxytryptamine receptors on visceral primary afferent neurones in the nodose ganglion of the rabbit. Nature. 1977 Jun 2;267(5610):448–450. doi: 10.1038/267448a0. [DOI] [PubMed] [Google Scholar]
  9. Higashi H., Nishi S. 5-Hydroxytryptamine receptors of visceral primary afferent neurones on rabbit nodose ganglia. J Physiol. 1982 Feb;323:543–567. doi: 10.1113/jphysiol.1982.sp014091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ishizuka S., Hattori K., Akaike N. Separation of ionic currents in the somatic membrane of frog sensory neurons. J Membr Biol. 1984;78(1):19–28. doi: 10.1007/BF01872528. [DOI] [PubMed] [Google Scholar]
  11. Krishtal O. A., Marchenko S. M., Pidoplichko V. I. Receptor for ATP in the membrane of mammalian sensory neurones. Neurosci Lett. 1983 Jan 31;35(1):41–45. doi: 10.1016/0304-3940(83)90524-4. [DOI] [PubMed] [Google Scholar]
  12. Lambert J. J., Peters J. A., Hales T. G., Dempster J. The properties of 5-HT3 receptors in clonal cell lines studied by patch-clamp techniques. Br J Pharmacol. 1989 May;97(1):27–40. doi: 10.1111/j.1476-5381.1989.tb11920.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Maricq A. V., Peterson A. S., Brake A. J., Myers R. M., Julius D. Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science. 1991 Oct 18;254(5030):432–437. doi: 10.1126/science.1718042. [DOI] [PubMed] [Google Scholar]
  14. Neijt H. C., Karpf A., Schoeffter P., Engel G., Hoyer D. Characterisation of 5-HT3 recognition sites in membranes of NG 108-15 neuroblastoma-glioma cells with [3H]ICS 205-930. Naunyn Schmiedebergs Arch Pharmacol. 1988 May;337(5):493–499. doi: 10.1007/BF00182721. [DOI] [PubMed] [Google Scholar]
  15. Neijt H. C., te Duits I. J., Vijverberg H. P. Pharmacological characterization of serotonin 5-HT3 receptor-mediated electrical response in cultured mouse neuroblastoma cells. Neuropharmacology. 1988 Mar;27(3):301–307. doi: 10.1016/0028-3908(88)90048-2. [DOI] [PubMed] [Google Scholar]
  16. Peters J. A., Malone H. M., Lambert J. J. Antagonism of 5-HT3 receptor mediated currents in murine N1E-115 neuroblastoma cells by (+)-tubocurarine. Neurosci Lett. 1990 Mar 2;110(1-2):107–112. doi: 10.1016/0304-3940(90)90796-c. [DOI] [PubMed] [Google Scholar]
  17. Robertson B., Bevan S. Properties of 5-hydroxytryptamine3 receptor-gated currents in adult rat dorsal root ganglion neurones. Br J Pharmacol. 1991 Jan;102(1):272–276. doi: 10.1111/j.1476-5381.1991.tb12165.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Seamon K. B., Padgett W., Daly J. W. Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3363–3367. doi: 10.1073/pnas.78.6.3363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sepúlveda M. I., Lummis S. C., Martin I. L. The agonist properties of m-chlorophenylbiguanide and 2-methyl-5-hydroxytryptamine on 5-HT3 receptors in N1E-115 neuroblastoma cells. Br J Pharmacol. 1991 Oct;104(2):536–540. doi: 10.1111/j.1476-5381.1991.tb12464.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Todorovic S. M., Anderson E. G. Pharmacological characterization of 5-hydroxytryptamine2 and 5-hydroxytryptamine3 receptors in rat dorsal root ganglion cells. J Pharmacol Exp Ther. 1990 Jul;254(1):109–115. [PubMed] [Google Scholar]
  21. Wallis D. I., Dun N. J. A comparison of fast and slow depolarizations evoked by 5-HT in guinea-pig coeliac ganglion cells in vitro. Br J Pharmacol. 1988 Jan;93(1):110–120. doi: 10.1111/j.1476-5381.1988.tb11411.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yakel J. L., Jackson M. B. 5-HT3 receptors mediate rapid responses in cultured hippocampus and a clonal cell line. Neuron. 1988 Sep;1(7):615–621. doi: 10.1016/0896-6273(88)90111-0. [DOI] [PubMed] [Google Scholar]
  23. Yakel J. L., Shao X. M., Jackson M. B. The selectivity of the channel coupled to the 5-HT3 receptor. Brain Res. 1990 Nov 12;533(1):46–52. doi: 10.1016/0006-8993(90)91793-g. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES