Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Apr;108(4):1071–1076. doi: 10.1111/j.1476-5381.1993.tb13507.x

Pharmacological characterization of two distinct alpha 1-adrenoceptor subtypes in rabbit thoracic aorta.

M Oshita 1, S Kigoshi 1, I Muramatsu 1
PMCID: PMC1908151  PMID: 8097950

Abstract

1. alpha 1-Adrenoceptor subtypes in rabbit thoracic aorta have been examined in binding and functional experiments. 2. [3H]-prazosin bound to two distinct populations of alpha 1-adrenoceptors (pKD,high = 9.94, Rhigh = 79.2 fmol mg-1 protein; pKD,low = 8.59, Rlow = 215 fmol mg-1 protein). Pretreatment with chloroethylclonidine (CEC, 10 microM) almost inactivated the prazosin-high affinity sites and reduced the number of the low affinity sites without changing the pKD value. 3. In the displacement experiments with CEC-untreated membranes, unlabelled prazosin, WB4101 and HV723 displaced the binding of 200 pM [3H]-prazosin monophasically; the affinities for WB4101 (pK1 = 8.88) and HV723 (8.49) were about 10 times lower than that for prazosin (9.99). In the CEC-pretreated membranes also, the antagonists inhibited the binding of 1000 pM [3H]-prazosin monophasically; the pK1 values for prazosin, WB4101 and HV723 were 9.09, 8.97 and 8.17, respectively. These results suggest that the prazosin-high and low affinity sites can be independently appraised in the former and latter experimental conditions. Noradrenaline, but not methoxamine, showed slightly higher affinity for the prazosin-high affinity site than for the low affinity site. 4. In the functional experiments, noradrenaline (0.001-100 microM) and methoxamine (0.1-100 microM) produced concentration-dependent contractions. Pretreatment with CEC inhibited the contractions induced by low concentrations of noradrenaline but without effect on the responses to methoxamine.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1074

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARUNLAKSHANA O., SCHILD H. O. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother. 1959 Mar;14(1):48–58. doi: 10.1111/j.1476-5381.1959.tb00928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babich M., Pedigo N. W., Butler B. T., Piascik M. T. Heterogeneity of alpha 1 receptors associated with vascular smooth muscle: evidence from functional and ligand binding studies. Life Sci. 1987 Aug 10;41(6):663–673. doi: 10.1016/0024-3205(87)90445-0. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  5. Han C. D., Minneman K. P. Interaction of subtype-selective antagonists with alpha 1-adrenergic receptor binding sites in rat tissues. Mol Pharmacol. 1991 Oct;40(4):531–538. [PubMed] [Google Scholar]
  6. Han C., Abel P. W., Minneman K. P. Alpha 1-adrenoceptor subtypes linked to different mechanisms for increasing intracellular Ca2+ in smooth muscle. Nature. 1987 Sep 24;329(6137):333–335. doi: 10.1038/329333a0. [DOI] [PubMed] [Google Scholar]
  7. Hiramatsu Y., Muraoka R., Kigoshi S., Muramatsu I. 5-Methylurapidil may discriminate between alpha 1-adrenoceptors with a high affinity for WB4101 in rat lung. Br J Pharmacol. 1992 Jan;105(1):6–7. doi: 10.1111/j.1476-5381.1992.tb14200.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lomasney J. W., Cotecchia S., Lefkowitz R. J., Caron M. G. Molecular biology of alpha-adrenergic receptors: implications for receptor classification and for structure-function relationships. Biochim Biophys Acta. 1991 Oct 26;1095(2):127–139. doi: 10.1016/0167-4889(91)90075-9. [DOI] [PubMed] [Google Scholar]
  9. McPherson G. A. Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Methods. 1985 Nov;14(3):213–228. doi: 10.1016/0160-5402(85)90034-8. [DOI] [PubMed] [Google Scholar]
  10. Mignot E., Bowersox S. S., Maddaluno J., Dement W., Ciaranello R. Evidence for multiple [3H]prazosin binding sites in canine brain membranes. Brain Res. 1989 May 1;486(1):56–66. doi: 10.1016/0006-8993(89)91277-8. [DOI] [PubMed] [Google Scholar]
  11. Minneman K. P. Alpha 1-adrenergic receptor subtypes, inositol phosphates, and sources of cell Ca2+. Pharmacol Rev. 1988 Jun;40(2):87–119. [PubMed] [Google Scholar]
  12. Minneman K. P., Han C., Abel P. W. Comparison of alpha 1-adrenergic receptor subtypes distinguished by chlorethylclonidine and WB 4101. Mol Pharmacol. 1988 May;33(5):509–514. [PubMed] [Google Scholar]
  13. Morrow A. L., Creese I. Characterization of alpha 1-adrenergic receptor subtypes in rat brain: a reevaluation of [3H]WB4104 and [3H]prazosin binding. Mol Pharmacol. 1986 Apr;29(4):321–330. [PubMed] [Google Scholar]
  14. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  15. Muramatsu I., Kigoshi S., Ohmura T. Subtypes of alpha 1-adrenoceptors involved in noradrenaline-induced contractions of rat thoracic aorta and dog carotid artery. Jpn J Pharmacol. 1991 Dec;57(4):535–544. doi: 10.1254/jjp.57.535. [DOI] [PubMed] [Google Scholar]
  16. Muramatsu I., Kigoshi S., Oshita M. Two distinct alpha 1-adrenoceptor subtypes involved in noradrenaline contraction of the rabbit thoracic aorta. Br J Pharmacol. 1990 Nov;101(3):662–666. doi: 10.1111/j.1476-5381.1990.tb14137.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Muramatsu I., Ohmura T., Kigoshi S., Hashimoto S., Oshita M. Pharmacological subclassification of alpha 1-adrenoceptors in vascular smooth muscle. Br J Pharmacol. 1990 Jan;99(1):197–201. doi: 10.1111/j.1476-5381.1990.tb14678.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ohmura T., Oshita M., Kigoshi S., Muramatsu I. Identification of alpha 1-adrenoceptor subtypes in the rat vas deferens: binding and functional studies. Br J Pharmacol. 1992 Nov;107(3):697–704. doi: 10.1111/j.1476-5381.1992.tb14509.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Oshita M., Kigoshi S., Muramatsu I. Three distinct binding sites for [3H]-prazosin in the rat cerebral cortex. Br J Pharmacol. 1991 Dec;104(4):961–965. doi: 10.1111/j.1476-5381.1991.tb12533.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Perez D. M., Piascik M. T., Graham R. M. Solution-phase library screening for the identification of rare clones: isolation of an alpha 1D-adrenergic receptor cDNA. Mol Pharmacol. 1991 Dec;40(6):876–883. [PubMed] [Google Scholar]
  21. Piascik M. T., Kusiak J. W., Pitha J., Butler B. T., Le H. T., Babich M. Alkylation of alpha-1 receptors with a chemically reactive analog of prazosin reveals low affinity sites for norepinephrine in rabbit aorta. J Pharmacol Exp Ther. 1988 Sep;246(3):1001–1011. [PubMed] [Google Scholar]
  22. Schwinn D. A., Page S. O., Middleton J. P., Lorenz W., Liggett S. B., Yamamoto K., Lapetina E. G., Caron M. G., Lefkowitz R. J., Cotecchia S. The alpha 1C-adrenergic receptor: characterization of signal transduction pathways and mammalian tissue heterogeneity. Mol Pharmacol. 1991 Nov;40(5):619–626. [PubMed] [Google Scholar]
  23. Suzuki E., Tsujimoto G., Tamura K., Hashimoto K. Two pharmacologically distinct alpha 1-adrenoceptor subtypes in the contraction of rabbit aorta: each subtype couples with a different Ca2+ signalling mechanism and plays a different physiological role. Mol Pharmacol. 1990 Nov;38(5):725–736. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES