Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Apr;108(4):933–940. doi: 10.1111/j.1476-5381.1993.tb13489.x

The effects of N omega-nitro-L-arginine methyl ester, sodium nitroprusside and noradrenaline on venous return in the anaesthetized cat.

E A Bower 1, A C Law 1
PMCID: PMC1908176  PMID: 8485632

Abstract

1. The vascular actions of N omega-nitro-L-arginine methyl ester (L-NAME), sodium nitroprusside and noradrenaline were investigated in cats under chloralose anaesthesia with controlled vascular tone and ventilation. Cardiac output, heart rate, vascular pressures and mean circulatory filling pressure (MCFP) were measured. Total peripheral resistance (TPR) and resistance to venous return (Rvr) were calculated from steady-state readings. 2. L-NAME (37 mumol kg-1, i.v.) administered to ten cats receiving noradrenaline (6 nmol kg-1 min-1, i.v.) increased aortic pressure by 47.5 +/- 7.1 mmHg from 106 mmHg, and MCFP by 1.56 +/- 0.36 mmHg from 10.0 mmHg (means +/- s.e. means). Mean changes in portal venous pressure, RAP and heart rate were not significant. Cardiac output fell by 29.7 +/- 3.3% from 130 ml min-1 kg-1. TPR rose by 108 +/- 7.2% from 796 mmHg l-1 min kg and Rvr by 58.4 +/- 4.5% from 64 mmHg l-1 min kg. 3. Infusion of sodium nitroprusside into cats receiving noradrenaline evoked dose-related falls in aortic pressure, MCFP, TPR and Rvr. Changes in portal venous pressure, RAP and heart rate were not significant and cardiac output fell slightly. After L-NAME, sensitivity to nitroprusside was increased by 139 +/- 34% for MCFP, 176 +/- 19% for TPR and 351 +/- 39% for Rvr, and cardiac output rose slightly. The nitroprusside infusion required to restore TPR after L-NAME was estimated to be 5.8 x 10(+/- 0.41) nmol kg-1 min-1, which was approximately three times more than that required to restore MCFP.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
938

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aisaka K., Gross S. S., Griffith O. W., Levi R. NG-methylarginine, an inhibitor of endothelium-derived nitric oxide synthesis, is a potent pressor agent in the guinea pig: does nitric oxide regulate blood pressure in vivo? Biochem Biophys Res Commun. 1989 Apr 28;160(2):881–886. doi: 10.1016/0006-291x(89)92517-5. [DOI] [PubMed] [Google Scholar]
  2. Barnes R. J., Bower E. A., Rink T. J. Haemodynamic responses to stimulation of the cardiac autonomic nerves in the anaesthetized cat with closed chest. J Physiol. 1980 Feb;299:55–73. doi: 10.1113/jphysiol.1980.sp013110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnes R. J., Bower E. A., Rink T. J. Haemodynamic responses to stimulation of the splanchnic and cardiac sympathetic nerves in the anaesthetized cat. J Physiol. 1986 Sep;378:417–436. doi: 10.1113/jphysiol.1986.sp016228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bates J. N., Baker M. T., Guerra R., Jr, Harrison D. G. Nitric oxide generation from nitroprusside by vascular tissue. Evidence that reduction of the nitroprusside anion and cyanide loss are required. Biochem Pharmacol. 1991 Dec 11;42 (Suppl):S157–S165. doi: 10.1016/0006-2952(91)90406-u. [DOI] [PubMed] [Google Scholar]
  5. Bellan J. A., Minkes R. K., McNamara D. B., Kadowitz P. J. N omega-nitro-L-arginine selectively inhibits vasodilator responses to acetylcholine and bradykinin in cats. Am J Physiol. 1991 Mar;260(3 Pt 2):H1025–H1029. doi: 10.1152/ajpheart.1991.260.3.H1025. [DOI] [PubMed] [Google Scholar]
  6. Bower E. A., O'Donnell C. P. Mean circulatory filling pressure during splanchnic nerve stimulation and whole-body hypoxia in the anaesthetized cat. J Physiol. 1991 Jan;432:543–556. doi: 10.1113/jphysiol.1991.sp018399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chyu K. Y., Guth P. H., Ross G. Effect of N omega-nitro-L-arginine methyl ester on arterial pressure and on vasodilator and vasoconstrictor responses: influence of initial vascular tone. Eur J Pharmacol. 1992 Mar 3;212(2-3):159–164. doi: 10.1016/0014-2999(92)90324-w. [DOI] [PubMed] [Google Scholar]
  8. De Mey J. G., Vanhoutte P. M. Heterogeneous behavior of the canine arterial and venous wall. Importance of the endothelium. Circ Res. 1982 Oct;51(4):439–447. doi: 10.1161/01.res.51.4.439. [DOI] [PubMed] [Google Scholar]
  9. Ekelund U., Mellander S. Role of endothelium-derived nitric oxide in the regulation of tonus in large-bore arterial resistance vessels, arterioles and veins in cat skeletal muscle. Acta Physiol Scand. 1990 Nov;140(3):301–309. doi: 10.1111/j.1748-1716.1990.tb09004.x. [DOI] [PubMed] [Google Scholar]
  10. Feelisch M., Noack E. A. Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur J Pharmacol. 1987 Jul 2;139(1):19–30. doi: 10.1016/0014-2999(87)90493-6. [DOI] [PubMed] [Google Scholar]
  11. GUYTON A. C., ABERNATHY B., LANGSTON J. B., KAUFMANN B. N., FAIRCHILD H. M. Relative importance of venous and arterial resistances in controlling venous return and cardiac output. Am J Physiol. 1959 May;196(5):1008–1014. doi: 10.1152/ajplegacy.1959.196.5.1008. [DOI] [PubMed] [Google Scholar]
  12. GUYTON A. C., LINDSEY A. W., ABERNATHY B., LANGSTON J. B. Mechanism of the increased venous return and cardiac output caused by epinephrine. Am J Physiol. 1958 Jan;192(1):126–130. doi: 10.1152/ajplegacy.1957.192.1.126. [DOI] [PubMed] [Google Scholar]
  13. Gardiner S. M., Compton A. M., Kemp P. A., Bennett T. Regional and cardiac haemodynamic effects of NG-nitro-L-arginine methyl ester in conscious, Long Evans rats. Br J Pharmacol. 1990 Nov;101(3):625–631. doi: 10.1111/j.1476-5381.1990.tb14131.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gardiner S. M., Compton A. M., Kemp P. A., Bennett T. Regional and cardiac haemodynamic responses to glyceryl trinitrate, acetylcholine, bradykinin and endothelin-1 in conscious rats: effects of NG-nitro-L-arginine methyl ester. Br J Pharmacol. 1990 Nov;101(3):632–639. doi: 10.1111/j.1476-5381.1990.tb14132.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gardiner S. M., Kemp P. A., Bennett T. Effects of NG-nitro-L-arginine methyl ester on vasodilator responses to acetylcholine, 5'-N-ethylcarboxamidoadenosine or salbutamol in conscious rats. Br J Pharmacol. 1991 Jul;103(3):1725–1732. doi: 10.1111/j.1476-5381.1991.tb09854.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gruetter C. A., Lemke S. M. Bradykinin-induced endothelium-dependent relaxation of bovine intrapulmonary artery and vein. Eur J Pharmacol. 1986 Apr 2;122(3):363–367. doi: 10.1016/0014-2999(86)90418-8. [DOI] [PubMed] [Google Scholar]
  17. Hutcheson I. R., Griffith T. M. Release of endothelium-derived relaxing factor is modulated both by frequency and amplitude of pulsatile flow. Am J Physiol. 1991 Jul;261(1 Pt 2):H257–H262. doi: 10.1152/ajpheart.1991.261.1.H257. [DOI] [PubMed] [Google Scholar]
  18. Ignarro L. J. Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res. 1989 Jul;65(1):1–21. doi: 10.1161/01.res.65.1.1. [DOI] [PubMed] [Google Scholar]
  19. Ignarro L. J., Buga G. M., Chaudhuri G. EDRF generation and release from perfused bovine pulmonary artery and vein. Eur J Pharmacol. 1988 Apr 27;149(1-2):79–88. doi: 10.1016/0014-2999(88)90045-3. [DOI] [PubMed] [Google Scholar]
  20. Ignarro L. J., Lippton H., Edwards J. C., Baricos W. H., Hyman A. L., Kadowitz P. J., Gruetter C. A. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther. 1981 Sep;218(3):739–749. [PubMed] [Google Scholar]
  21. Jones L. F., Brody M. J. Coronary blood flow in rats is dependent on the release of vascular nitric oxide. J Pharmacol Exp Ther. 1992 Feb;260(2):627–631. [PubMed] [Google Scholar]
  22. Klabunde R. E., Ritger R. C., Helgren M. C. Cardiovascular actions of inhibitors of endothelium-derived relaxing factor (nitric oxide) formation/release in anesthetized dogs. Eur J Pharmacol. 1991 Jun 18;199(1):51–59. doi: 10.1016/0014-2999(91)90636-5. [DOI] [PubMed] [Google Scholar]
  23. Lamontagne D., Pohl U., Busse R. Mechanical deformation of vessel wall and shear stress determine the basal release of endothelium-derived relaxing factor in the intact rabbit coronary vascular bed. Circ Res. 1992 Jan;70(1):123–130. doi: 10.1161/01.res.70.1.123. [DOI] [PubMed] [Google Scholar]
  24. Marcel van Gelderen E., Heiligers J. P., Saxena P. R. Haemodynamic changes and acetylcholine-induced hypotensive responses after NG-nitro-L-arginine methyl ester in rats and cats. Br J Pharmacol. 1991 Aug;103(4):1899–1904. doi: 10.1111/j.1476-5381.1991.tb12349.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McMahon T. J., Hood J. S., Kadowitz P. J. Pulmonary vasodilator response to vagal stimulation is blocked by N omega-nitro-L-arginine methyl ester in the cat. Circ Res. 1992 Feb;70(2):364–369. doi: 10.1161/01.res.70.2.364. [DOI] [PubMed] [Google Scholar]
  26. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  27. Moncada S., Rees D. D., Schulz R., Palmer R. M. Development and mechanism of a specific supersensitivity to nitrovasodilators after inhibition of vascular nitric oxide synthesis in vivo. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2166–2170. doi: 10.1073/pnas.88.6.2166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Moore P. K., al-Swayeh O. A., Chong N. W., Evans R. A., Gibson A. L-NG-nitro arginine (L-NOARG), a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Br J Pharmacol. 1990 Feb;99(2):408–412. doi: 10.1111/j.1476-5381.1990.tb14717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pouleur H., Covell J. W., Ross J., Jr Effects of nitroprusside on venous return and central blood volume in the absence and presence of acute heart failure. Circulation. 1980 Feb;61(2):328–337. doi: 10.1161/01.cir.61.2.328. [DOI] [PubMed] [Google Scholar]
  30. Rees D. D., Palmer R. M., Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A. 1989 May;86(9):3375–3378. doi: 10.1073/pnas.86.9.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rees D. D., Palmer R. M., Schulz R., Hodson H. F., Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol. 1990 Nov;101(3):746–752. doi: 10.1111/j.1476-5381.1990.tb14151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. SARNOFF S. J., MITCHELL J. H., GILMORE J. P., REMENSNYDER J. P. Homeometric autoregulation in the heart. Circ Res. 1960 Sep;8:1077–1091. doi: 10.1161/01.res.8.5.1077. [DOI] [PubMed] [Google Scholar]
  33. Seidel C. L., LaRochelle J. Venous and arterial endothelia: different dilator abilities in dog vessels. Circ Res. 1987 Apr;60(4):626–630. doi: 10.1161/01.res.60.4.626. [DOI] [PubMed] [Google Scholar]
  34. Shirasaki Y., Su C. Endothelium removal augments vasodilation by sodium nitroprusside and sodium nitrite. Eur J Pharmacol. 1985 Aug 7;114(1):93–96. doi: 10.1016/0014-2999(85)90527-8. [DOI] [PubMed] [Google Scholar]
  35. Thomas G. R., Thiemermann C., Walder C., Vane J. R. The effects of endothelium-dependent vasodilators on cardiac output and their distribution in the anaesthetized rat: a comparison with sodium nitroprusside. Br J Pharmacol. 1988 Nov;95(3):986–992. doi: 10.1111/j.1476-5381.1988.tb11729.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ueeda M., Silvia S. K., Olsson R. A. Nitric oxide modulates coronary autoregulation in the guinea pig. Circ Res. 1992 Jun;70(6):1296–1303. doi: 10.1161/01.res.70.6.1296. [DOI] [PubMed] [Google Scholar]
  37. Vargas H. M., Cuevas J. M., Ignarro L. J., Chaudhuri G. Comparison of the inhibitory potencies of N(G)-methyl-, N(G)-nitro- and N(G)-amino-L-arginine on EDRF function in the rat: evidence for continuous basal EDRF release. J Pharmacol Exp Ther. 1991 Jun;257(3):1208–1215. [PubMed] [Google Scholar]
  38. Vargas H. M., Ignarro L. J., Chaudhuri G. Physiological release of nitric oxide is dependent on the level of vascular tone. Eur J Pharmacol. 1990 Nov 13;190(3):393–397. doi: 10.1016/0014-2999(90)94204-b. [DOI] [PubMed] [Google Scholar]
  39. Vo P. A., Reid J. J., Rand M. J. Endothelial nitric oxide attenuates vasoconstrictor responses to nerve stimulation and noradrenaline in the rat tail artery. Eur J Pharmacol. 1991 Jun 18;199(1):123–125. doi: 10.1016/0014-2999(91)90647-9. [DOI] [PubMed] [Google Scholar]
  40. Widdop R. E., Gardiner S. M., Kemp P. A., Bennett T. The influence of atropine and atenolol on the cardiac haemodynamic effects of NG-nitro-L-arginine methyl ester in conscious, Long Evans rats. Br J Pharmacol. 1992 Mar;105(3):653–656. doi: 10.1111/j.1476-5381.1992.tb09034.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Woodman O. L., Dusting G. J. N-nitro L-arginine causes coronary vasoconstriction and inhibits endothelium-dependent vasodilatation in anaesthetized greyhounds. Br J Pharmacol. 1991 Jun;103(2):1407–1410. doi: 10.1111/j.1476-5381.1991.tb09802.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES