Abstract
1. We studied the effects of caffeine on coronary artery smooth muscle of the pig by measuring changes in isometric tension, cytosolic free Ca(2+) concentration ( [Ca2+]i) and transmembrane potential. 2. In the absence of tone, caffeine induced a concentration-dependent transient contraction of coronary artery strips, followed by sustained relaxation. Simultaneously with the relaxation, caffeine, 25 mM, hyperpolarized the smooth muscle cells by 7.7 +/- 0.9 mV. 3. Caffeine caused a concentration-dependent relaxation of strips precontracted with 10(-5)M acetylcholine (ACH). A supramaximal relaxing concentration of 25 mM caffeine produced an additional transient increase in [Ca2+]i on the Ca2+ plateau of ACh tonic contraction, which was followed by a decrease in [Ca2+]i to a level slightly below the basal concentration. This relaxation was accompanied by a hyperpolarization of 7.3 +/- 0.9 mV. 4. KCI 120 mM (high K+) contracted the strips with a concomitant depolarization of 38.6 +/- 1.6 mV and sustained increase in [Ca2+]i. Caffeine caused a concentration-dependent relaxation of high K+-induced contraction. Caffeine, 25 mM, decreased the Ca2+ plateau to a level that remained above the basal concentration of Ca2+ but did not change the membrane potential. 5. When strips were placed in a Ca(2+)-free medium with EGTA 2mM, and, in addition, ACh was applied successively three times, both intracellular and extracellular mobilizable Ca2+ pools were depleted. In these conditions, phorbol 12,13 dibutyrate (PDBu) 10(-7) M and prostaglandin F 2 alpha (PGF 2 alpha) 10(-5) M contracted the strips. Caffeine (25 mM) inhibited these contractions with no change in [Ca2+]i.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abe A., Karaki H. Inhibitory effects of forskolin on vascular smooth muscle of rabbit aorta. Jpn J Pharmacol. 1988 Mar;46(3):293–301. doi: 10.1254/jjp.46.293. [DOI] [PubMed] [Google Scholar]
- Ahn H. Y., Karaki H., Urakawa N. Inhibitory effects of caffeine on contractions and calcium movement in vascular and intestinal smooth muscle. Br J Pharmacol. 1988 Feb;93(2):267–274. doi: 10.1111/j.1476-5381.1988.tb11430.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker P. L., Fay F. S. Photobleaching of fura-2 and its effect on determination of calcium concentrations. Am J Physiol. 1987 Oct;253(4 Pt 1):C613–C618. doi: 10.1152/ajpcell.1987.253.4.C613. [DOI] [PubMed] [Google Scholar]
- Beny J. L., Brunet P. C., Huggel H. Effect of mechanical stimulation, substance P and vasoactive intestinal polypeptide on the electrical and mechanical activities of circular smooth muscles from pig coronary arteries contracted with acetylcholine: role of endothelium. Pharmacology. 1986;33(2):61–68. doi: 10.1159/000138202. [DOI] [PubMed] [Google Scholar]
- Beny J. L., Brunet P., Huggel H. Interaction of bradykinin and des-Arg9-bradykinin with isolated pig coronary arteries: mechanical and electrophysiological events. Regul Pept. 1987 Apr;17(4):181–190. doi: 10.1016/0167-0115(87)90061-9. [DOI] [PubMed] [Google Scholar]
- Bradley A. B., Morgan K. G. Alterations in cytoplasmic calcium sensitivity during porcine coronary artery contractions as detected by aequorin. J Physiol. 1987 Apr;385:437–448. doi: 10.1113/jphysiol.1987.sp016500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bény J. L., Brunet P. C. Electrophysiological and mechanical effects of substance P and acetylcholine on rabbit aorta. J Physiol. 1988 Apr;398:277–289. doi: 10.1113/jphysiol.1988.sp017042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casteels R., Kitamura K., Kuriyama H., Suzuki H. Excitation-contraction coupling in the smooth muscle cells of the rabbit main pulmonary artery. J Physiol. 1977 Sep;271(1):63–79. doi: 10.1113/jphysiol.1977.sp011990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chatterjee M., Tejada M. Phorbol ester-induced contraction in chemically skinned vascular smooth muscle. Am J Physiol. 1986 Sep;251(3 Pt 1):C356–C361. doi: 10.1152/ajpcell.1986.251.3.C356. [DOI] [PubMed] [Google Scholar]
- Conti M. A., Adelstein R. S. Phosphorylation by cyclic adenosine 3':5'-monophosphate-dependent protein kinase regulates myosin light chain kinase. Fed Proc. 1980 Apr;39(5):1569–1573. [PubMed] [Google Scholar]
- Daly J. W. Forskolin, adenylate cyclase, and cell physiology: an overview. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1984;17:81–89. [PubMed] [Google Scholar]
- Forder J., Scriabine A., Rasmussen H. Plasma membrane calcium flux, protein kinase C activation and smooth muscle contraction. J Pharmacol Exp Ther. 1985 Nov;235(2):267–273. [PubMed] [Google Scholar]
- Fredholm B. B., Brodin K., Strandberg K. On the mechanism of relaxation of tracheal muscle by theophylline and other cyclic nucleotide phosphodiesterase inhibitors. Acta Pharmacol Toxicol (Copenh) 1979 Nov;45(5):336–344. doi: 10.1111/j.1600-0773.1979.tb02402.x. [DOI] [PubMed] [Google Scholar]
- Gerthoffer W. T., Murphy R. A. Ca2+, myosin phosphorylation, and relaxation of arterial smooth muscle. Am J Physiol. 1983 Sep;245(3):C271–C277. doi: 10.1152/ajpcell.1983.245.3.C271. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Heaslip R. J., Sickels B. D. Evidence that prostaglandins can contract the rat aorta via a novel protein kinase C-dependent mechanism. J Pharmacol Exp Ther. 1989 Jul;250(1):44–51. [PubMed] [Google Scholar]
- Hirano K., Kanaide H., Nakamura M. Effects of okadaic acid on cytosolic calcium concentrations and on contractions of the porcine coronary artery. Br J Pharmacol. 1989 Dec;98(4):1261–1266. doi: 10.1111/j.1476-5381.1989.tb12672.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoar P. E., Kerrick W. G. Mn2+ activates skinned smooth muscle cells in the absence of myosin light chain phosphorylation. Pflugers Arch. 1988 Aug;412(3):225–230. doi: 10.1007/BF00582501. [DOI] [PubMed] [Google Scholar]
- Ito Y., Kitamura K., Kuriyama H. Effects of acetylcholine and catecholamines on the smooth muscle cell of the porcine coronary artery. J Physiol. 1979 Sep;294:595–611. doi: 10.1113/jphysiol.1979.sp012948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito Y., Kuriyama H. Caffeine and excitation-contraction coupling in the guinea pig taenia coli. J Gen Physiol. 1971 Apr;57(4):448–463. doi: 10.1085/jgp.57.4.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Itoh T., Kajiwara M., Kitamura K., Kuriyama H. Roles of stored calcium on the mechanical response evoked in smooth muscle cells of the porcine coronary artery. J Physiol. 1982 Jan;322:107–125. doi: 10.1113/jphysiol.1982.sp014026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karaki H., Ahn H. Y., Urakawa N. Caffeine-induced contraction in vascular smooth muscle. Arch Int Pharmacodyn Ther. 1987 Jan;285(1):60–71. [PubMed] [Google Scholar]
- Leijten P. A., van Breemen C. The effects of caffeine on the noradrenaline-sensitive calcium store in rabbit aorta. J Physiol. 1984 Dec;357:327–339. doi: 10.1113/jphysiol.1984.sp015502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin C., Dacquet C., Mironneau C., Mironneau J. Caffeine-induced inhibition of calcium channel current in cultured smooth cells from pregnant rat myometrium. Br J Pharmacol. 1989 Oct;98(2):493–498. doi: 10.1111/j.1476-5381.1989.tb12622.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mastrangelo D., Mathison R. Everted portal vein: a sensitive model for studies of vasoactive compounds. J Cardiovasc Pharmacol. 1983 Jan-Feb;5(1):98–101. [PubMed] [Google Scholar]
- Matsumoto T., Kanaide H., Shogakiuchi Y., Nakamura M. Characteristics of the histamine-sensitive calcium store in vascular smooth muscle. Comparison with norepinephrine- or caffeine-sensitive stores. J Biol Chem. 1990 Apr 5;265(10):5610–5616. [PubMed] [Google Scholar]
- Muller M. J., Baer H. P. Relaxant effects of forskolin in smooth muscle. Role of cyclic AMP. Naunyn Schmiedebergs Arch Pharmacol. 1983 Feb;322(1):78–82. doi: 10.1007/BF00649356. [DOI] [PubMed] [Google Scholar]
- Ozaki H., Ishihara H., Kohama K., Nonomura Y., Shibata S., Karaki H. Calcium-independent phosphorylation of smooth muscle myosin light chain by okadaic acid isolated from black sponge (Halichondria okadai). J Pharmacol Exp Ther. 1987 Dec;243(3):1167–1173. [PubMed] [Google Scholar]
- Ozaki H., Kasai H., Hori M., Sato K., Ishihara H., Karaki H. Direct inhibition of chicken gizzard smooth muscle contractile apparatus by caffeine. Naunyn Schmiedebergs Arch Pharmacol. 1990 Mar;341(3):262–267. doi: 10.1007/BF00169741. [DOI] [PubMed] [Google Scholar]
- Polson J. B., Krzanowski J. J., Fitzpatrick D. F., Szentivanyi A. Studies on the inhibition of phosphodiesterase-catalyzed cyclic AMP and cyclic GMP breakdown and relaxation of canine tracheal smooth muscle. Biochem Pharmacol. 1978 Jan 15;27(2):254–256. doi: 10.1016/0006-2952(78)90312-x. [DOI] [PubMed] [Google Scholar]
- Saida K., van Breemen C. Characteristics of the norepinephrine-sensitive Ca2+ store in vascular smooth muscle. Blood Vessels. 1984;21(1):43–52. doi: 10.1159/000158493. [DOI] [PubMed] [Google Scholar]
- Sato K., Ozaki H., Karaki H. Multiple effects of caffeine on contraction and cytosolic free Ca2+ levels in vascular smooth muscle of rat aorta. Naunyn Schmiedebergs Arch Pharmacol. 1988 Oct;338(4):443–448. doi: 10.1007/BF00172125. [DOI] [PubMed] [Google Scholar]
- Singer H. A., Baker K. M. Calcium dependence of phorbol 12,13-dibutyrate-induced force and myosin light chain phosphorylation in arterial smooth muscle. J Pharmacol Exp Ther. 1987 Dec;243(3):814–821. [PubMed] [Google Scholar]
- Sunano S., Miyazaki E. Effects of caffeine on electrical and mechanical activities of guinea pig taenia coli. Am J Physiol. 1973 Aug;225(2):335–339. doi: 10.1152/ajplegacy.1973.225.2.335. [DOI] [PubMed] [Google Scholar]