Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Aug;103(4):1877–1882. doi: 10.1111/j.1476-5381.1991.tb12345.x

Mechanisms controlling caffeine-induced relaxation of coronary artery of the pig.

V van der Bent 1, J L Bény 1
PMCID: PMC1908191  PMID: 1912976

Abstract

1. We studied the effects of caffeine on coronary artery smooth muscle of the pig by measuring changes in isometric tension, cytosolic free Ca(2+) concentration ( [Ca2+]i) and transmembrane potential. 2. In the absence of tone, caffeine induced a concentration-dependent transient contraction of coronary artery strips, followed by sustained relaxation. Simultaneously with the relaxation, caffeine, 25 mM, hyperpolarized the smooth muscle cells by 7.7 +/- 0.9 mV. 3. Caffeine caused a concentration-dependent relaxation of strips precontracted with 10(-5)M acetylcholine (ACH). A supramaximal relaxing concentration of 25 mM caffeine produced an additional transient increase in [Ca2+]i on the Ca2+ plateau of ACh tonic contraction, which was followed by a decrease in [Ca2+]i to a level slightly below the basal concentration. This relaxation was accompanied by a hyperpolarization of 7.3 +/- 0.9 mV. 4. KCI 120 mM (high K+) contracted the strips with a concomitant depolarization of 38.6 +/- 1.6 mV and sustained increase in [Ca2+]i. Caffeine caused a concentration-dependent relaxation of high K+-induced contraction. Caffeine, 25 mM, decreased the Ca2+ plateau to a level that remained above the basal concentration of Ca2+ but did not change the membrane potential. 5. When strips were placed in a Ca(2+)-free medium with EGTA 2mM, and, in addition, ACh was applied successively three times, both intracellular and extracellular mobilizable Ca2+ pools were depleted. In these conditions, phorbol 12,13 dibutyrate (PDBu) 10(-7) M and prostaglandin F 2 alpha (PGF 2 alpha) 10(-5) M contracted the strips. Caffeine (25 mM) inhibited these contractions with no change in [Ca2+]i.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe A., Karaki H. Inhibitory effects of forskolin on vascular smooth muscle of rabbit aorta. Jpn J Pharmacol. 1988 Mar;46(3):293–301. doi: 10.1254/jjp.46.293. [DOI] [PubMed] [Google Scholar]
  2. Ahn H. Y., Karaki H., Urakawa N. Inhibitory effects of caffeine on contractions and calcium movement in vascular and intestinal smooth muscle. Br J Pharmacol. 1988 Feb;93(2):267–274. doi: 10.1111/j.1476-5381.1988.tb11430.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Becker P. L., Fay F. S. Photobleaching of fura-2 and its effect on determination of calcium concentrations. Am J Physiol. 1987 Oct;253(4 Pt 1):C613–C618. doi: 10.1152/ajpcell.1987.253.4.C613. [DOI] [PubMed] [Google Scholar]
  4. Beny J. L., Brunet P. C., Huggel H. Effect of mechanical stimulation, substance P and vasoactive intestinal polypeptide on the electrical and mechanical activities of circular smooth muscles from pig coronary arteries contracted with acetylcholine: role of endothelium. Pharmacology. 1986;33(2):61–68. doi: 10.1159/000138202. [DOI] [PubMed] [Google Scholar]
  5. Beny J. L., Brunet P., Huggel H. Interaction of bradykinin and des-Arg9-bradykinin with isolated pig coronary arteries: mechanical and electrophysiological events. Regul Pept. 1987 Apr;17(4):181–190. doi: 10.1016/0167-0115(87)90061-9. [DOI] [PubMed] [Google Scholar]
  6. Bradley A. B., Morgan K. G. Alterations in cytoplasmic calcium sensitivity during porcine coronary artery contractions as detected by aequorin. J Physiol. 1987 Apr;385:437–448. doi: 10.1113/jphysiol.1987.sp016500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bény J. L., Brunet P. C. Electrophysiological and mechanical effects of substance P and acetylcholine on rabbit aorta. J Physiol. 1988 Apr;398:277–289. doi: 10.1113/jphysiol.1988.sp017042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Casteels R., Kitamura K., Kuriyama H., Suzuki H. Excitation-contraction coupling in the smooth muscle cells of the rabbit main pulmonary artery. J Physiol. 1977 Sep;271(1):63–79. doi: 10.1113/jphysiol.1977.sp011990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chatterjee M., Tejada M. Phorbol ester-induced contraction in chemically skinned vascular smooth muscle. Am J Physiol. 1986 Sep;251(3 Pt 1):C356–C361. doi: 10.1152/ajpcell.1986.251.3.C356. [DOI] [PubMed] [Google Scholar]
  10. Conti M. A., Adelstein R. S. Phosphorylation by cyclic adenosine 3':5'-monophosphate-dependent protein kinase regulates myosin light chain kinase. Fed Proc. 1980 Apr;39(5):1569–1573. [PubMed] [Google Scholar]
  11. Daly J. W. Forskolin, adenylate cyclase, and cell physiology: an overview. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1984;17:81–89. [PubMed] [Google Scholar]
  12. Forder J., Scriabine A., Rasmussen H. Plasma membrane calcium flux, protein kinase C activation and smooth muscle contraction. J Pharmacol Exp Ther. 1985 Nov;235(2):267–273. [PubMed] [Google Scholar]
  13. Fredholm B. B., Brodin K., Strandberg K. On the mechanism of relaxation of tracheal muscle by theophylline and other cyclic nucleotide phosphodiesterase inhibitors. Acta Pharmacol Toxicol (Copenh) 1979 Nov;45(5):336–344. doi: 10.1111/j.1600-0773.1979.tb02402.x. [DOI] [PubMed] [Google Scholar]
  14. Gerthoffer W. T., Murphy R. A. Ca2+, myosin phosphorylation, and relaxation of arterial smooth muscle. Am J Physiol. 1983 Sep;245(3):C271–C277. doi: 10.1152/ajpcell.1983.245.3.C271. [DOI] [PubMed] [Google Scholar]
  15. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  16. Heaslip R. J., Sickels B. D. Evidence that prostaglandins can contract the rat aorta via a novel protein kinase C-dependent mechanism. J Pharmacol Exp Ther. 1989 Jul;250(1):44–51. [PubMed] [Google Scholar]
  17. Hirano K., Kanaide H., Nakamura M. Effects of okadaic acid on cytosolic calcium concentrations and on contractions of the porcine coronary artery. Br J Pharmacol. 1989 Dec;98(4):1261–1266. doi: 10.1111/j.1476-5381.1989.tb12672.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hoar P. E., Kerrick W. G. Mn2+ activates skinned smooth muscle cells in the absence of myosin light chain phosphorylation. Pflugers Arch. 1988 Aug;412(3):225–230. doi: 10.1007/BF00582501. [DOI] [PubMed] [Google Scholar]
  19. Ito Y., Kitamura K., Kuriyama H. Effects of acetylcholine and catecholamines on the smooth muscle cell of the porcine coronary artery. J Physiol. 1979 Sep;294:595–611. doi: 10.1113/jphysiol.1979.sp012948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ito Y., Kuriyama H. Caffeine and excitation-contraction coupling in the guinea pig taenia coli. J Gen Physiol. 1971 Apr;57(4):448–463. doi: 10.1085/jgp.57.4.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Itoh T., Kajiwara M., Kitamura K., Kuriyama H. Roles of stored calcium on the mechanical response evoked in smooth muscle cells of the porcine coronary artery. J Physiol. 1982 Jan;322:107–125. doi: 10.1113/jphysiol.1982.sp014026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Karaki H., Ahn H. Y., Urakawa N. Caffeine-induced contraction in vascular smooth muscle. Arch Int Pharmacodyn Ther. 1987 Jan;285(1):60–71. [PubMed] [Google Scholar]
  23. Leijten P. A., van Breemen C. The effects of caffeine on the noradrenaline-sensitive calcium store in rabbit aorta. J Physiol. 1984 Dec;357:327–339. doi: 10.1113/jphysiol.1984.sp015502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Martin C., Dacquet C., Mironneau C., Mironneau J. Caffeine-induced inhibition of calcium channel current in cultured smooth cells from pregnant rat myometrium. Br J Pharmacol. 1989 Oct;98(2):493–498. doi: 10.1111/j.1476-5381.1989.tb12622.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mastrangelo D., Mathison R. Everted portal vein: a sensitive model for studies of vasoactive compounds. J Cardiovasc Pharmacol. 1983 Jan-Feb;5(1):98–101. [PubMed] [Google Scholar]
  26. Matsumoto T., Kanaide H., Shogakiuchi Y., Nakamura M. Characteristics of the histamine-sensitive calcium store in vascular smooth muscle. Comparison with norepinephrine- or caffeine-sensitive stores. J Biol Chem. 1990 Apr 5;265(10):5610–5616. [PubMed] [Google Scholar]
  27. Muller M. J., Baer H. P. Relaxant effects of forskolin in smooth muscle. Role of cyclic AMP. Naunyn Schmiedebergs Arch Pharmacol. 1983 Feb;322(1):78–82. doi: 10.1007/BF00649356. [DOI] [PubMed] [Google Scholar]
  28. Ozaki H., Ishihara H., Kohama K., Nonomura Y., Shibata S., Karaki H. Calcium-independent phosphorylation of smooth muscle myosin light chain by okadaic acid isolated from black sponge (Halichondria okadai). J Pharmacol Exp Ther. 1987 Dec;243(3):1167–1173. [PubMed] [Google Scholar]
  29. Ozaki H., Kasai H., Hori M., Sato K., Ishihara H., Karaki H. Direct inhibition of chicken gizzard smooth muscle contractile apparatus by caffeine. Naunyn Schmiedebergs Arch Pharmacol. 1990 Mar;341(3):262–267. doi: 10.1007/BF00169741. [DOI] [PubMed] [Google Scholar]
  30. Polson J. B., Krzanowski J. J., Fitzpatrick D. F., Szentivanyi A. Studies on the inhibition of phosphodiesterase-catalyzed cyclic AMP and cyclic GMP breakdown and relaxation of canine tracheal smooth muscle. Biochem Pharmacol. 1978 Jan 15;27(2):254–256. doi: 10.1016/0006-2952(78)90312-x. [DOI] [PubMed] [Google Scholar]
  31. Saida K., van Breemen C. Characteristics of the norepinephrine-sensitive Ca2+ store in vascular smooth muscle. Blood Vessels. 1984;21(1):43–52. doi: 10.1159/000158493. [DOI] [PubMed] [Google Scholar]
  32. Sato K., Ozaki H., Karaki H. Multiple effects of caffeine on contraction and cytosolic free Ca2+ levels in vascular smooth muscle of rat aorta. Naunyn Schmiedebergs Arch Pharmacol. 1988 Oct;338(4):443–448. doi: 10.1007/BF00172125. [DOI] [PubMed] [Google Scholar]
  33. Singer H. A., Baker K. M. Calcium dependence of phorbol 12,13-dibutyrate-induced force and myosin light chain phosphorylation in arterial smooth muscle. J Pharmacol Exp Ther. 1987 Dec;243(3):814–821. [PubMed] [Google Scholar]
  34. Sunano S., Miyazaki E. Effects of caffeine on electrical and mechanical activities of guinea pig taenia coli. Am J Physiol. 1973 Aug;225(2):335–339. doi: 10.1152/ajplegacy.1973.225.2.335. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES