Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Sep;104(1):239–245. doi: 10.1111/j.1476-5381.1991.tb12413.x

The behavioural properties of CI-988, a selective cholecystokininB receptor antagonist.

L Singh 1, M J Field 1, J Hughes 1, R Menzies 1, R J Oles 1, C A Vass 1, G N Woodruff 1
PMCID: PMC1908271  PMID: 1686205

Abstract

1. The behavioural effects of a selective cholecystokininB (CCKB) receptor antagonist CI-988 were investigated in rodents. 2. In three rodent tests of anxiety (rat elevated X-maze, rat social interaction test and mouse light/dark box) CI-988 over the dose range 0.001-10.0 mg kg-1, (i.p.) produced an anxiolytic-like action. The magnitude of this effect was similar to that of chlordiazepoxide (CDP). In contrast, the selective CCKA receptor antagonist, devazepide, was inactive. CI-988 also showed anxiolytic-like action in the rat conflict test but the magnitude of this effect was about 2.5 fold less than that of CDP. 3. Central but not peripheral administration of the selective CCKB receptor agonist, pentagastrin, like FG 7142, produced an anxiogenic-like action. 4. The pentagastrin-induced anxiety was dose-dependently antagonized by CI-988, whereas devazepide was inactive. However, ten times higher doses of CI-988 were required to block a similar action of FG 7142. 5. In contrast to CDP, CI-988 up to 3000 fold higher doses than those inducing anxiolysis was inactive in tests measuring sedation and ataxia. It also failed to antagonize pentylenetetrazol-induced tonic seizures. Furthermore, CI-988 did not interact with alcohol or barbiturates. Thus, CI-988 appears to be an anxioselective compound. 6. The anxiolytic-like action of CDP in the rat elevated X-maze was dose-dependently antagonized by flumazenil. In contrast, the benzodiazepine receptor antagonist failed to block a similar effect of CI-988. 7. Thus, CI-988 shows anxiolytic-like activity in several animal models of anxiety.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
239

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abelson J. L., Nesse R. M. Cholecystokinin-4 and panic. Arch Gen Psychiatry. 1990 Apr;47(4):395–395. doi: 10.1001/archpsyc.1990.01810160095016. [DOI] [PubMed] [Google Scholar]
  2. Boden P., Hill R. G. Effects of cholecystokinin and related peptides on neuronal activity in the ventromedial nucleus of the rat hypothalamus. Br J Pharmacol. 1988 May;94(1):246–252. doi: 10.1111/j.1476-5381.1988.tb11521.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradwejn J., Koszycki D., Meterissian G. Cholecystokinin-tetrapeptide induces panic attacks in patients with panic disorder. Can J Psychiatry. 1990 Feb;35(1):83–85. doi: 10.1177/070674379003500115. [DOI] [PubMed] [Google Scholar]
  4. Chang R. S., Lotti V. J. Biochemical and pharmacological characterization of an extremely potent and selective nonpeptide cholecystokinin antagonist. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4923–4926. doi: 10.1073/pnas.83.13.4923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Costall B., Jones B. J., Kelly M. E., Naylor R. J., Tomkins D. M. Exploration of mice in a black and white test box: validation as a model of anxiety. Pharmacol Biochem Behav. 1989 Mar;32(3):777–785. doi: 10.1016/0091-3057(89)90033-6. [DOI] [PubMed] [Google Scholar]
  6. Crawley J. N., Hays S. E., Paul S. M., Goodwin F. K. Cholecystokinin reduces exploratory behavior in mice. Physiol Behav. 1981 Sep;27(3):407–411. doi: 10.1016/0031-9384(81)90324-3. [DOI] [PubMed] [Google Scholar]
  7. Daugé V., Steimes P., Derrien M., Beau N., Roques B. P., Féger J. CCK8 effects on motivational and emotional states of rats involve CCKA receptors of the postero-median part of the nucleus accumbens. Pharmacol Biochem Behav. 1989 Sep;34(1):157–163. doi: 10.1016/0091-3057(89)90367-5. [DOI] [PubMed] [Google Scholar]
  8. Dockray G. J. Immunochemical evidence of cholecystokinin-like peptides in brain. Nature. 1976 Dec 9;264(5586):568–570. doi: 10.1038/264568a0. [DOI] [PubMed] [Google Scholar]
  9. Gibbs J., Young R. C., Smith G. P. Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol. 1973 Sep;84(3):488–495. doi: 10.1037/h0034870. [DOI] [PubMed] [Google Scholar]
  10. Guy A. P., Gardner C. R. Pharmacological characterisation of a modified social interaction model of anxiety in the rat. Neuropsychobiology. 1985;13(4):194–200. doi: 10.1159/000118187. [DOI] [PubMed] [Google Scholar]
  11. Handley S. L., Mithani S. Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of 'fear'-motivated behaviour. Naunyn Schmiedebergs Arch Pharmacol. 1984 Aug;327(1):1–5. doi: 10.1007/BF00504983. [DOI] [PubMed] [Google Scholar]
  12. Hill D. R., Campbell N. J., Shaw T. M., Woodruff G. N. Autoradiographic localization and biochemical characterization of peripheral type CCK receptors in rat CNS using highly selective nonpeptide CCK antagonists. J Neurosci. 1987 Sep;7(9):2967–2976. doi: 10.1523/JNEUROSCI.07-09-02967.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hill D. R., Shaw T. M., Woodruff G. N. Species differences in the localization of 'peripheral' type cholecystokinin receptors in rodent brain. Neurosci Lett. 1987 Aug 31;79(3):286–289. doi: 10.1016/0304-3940(87)90445-9. [DOI] [PubMed] [Google Scholar]
  14. Horwell D. C., Hughes J., Hunter J. C., Pritchard M. C., Richardson R. S., Roberts E., Woodruff G. N. Rationally designed "dipeptoid" analogues of CCK. alpha-Methyltryptophan derivatives as highly selective and orally active gastrin and CCK-B antagonists with potent anxiolytic properties. J Med Chem. 1991 Jan;34(1):404–414. doi: 10.1021/jm00105a062. [DOI] [PubMed] [Google Scholar]
  15. Hughes J., Boden P., Costall B., Domeney A., Kelly E., Horwell D. C., Hunter J. C., Pinnock R. D., Woodruff G. N. Development of a class of selective cholecystokinin type B receptor antagonists having potent anxiolytic activity. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6728–6732. doi: 10.1073/pnas.87.17.6728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Innis R. B., Snyder S. H. Distinct cholecystokinin receptors in brain and pancreas. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6917–6921. doi: 10.1073/pnas.77.11.6917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Katsuura G., Hirota R., Itoh S. Cholecystokinin-induced hypothermia in the rat. Experientia. 1981 Jan 15;37(1):60–60. doi: 10.1007/BF01965568. [DOI] [PubMed] [Google Scholar]
  18. Kilfoil T., Michel A., Montgomery D., Whiting R. L. Effects of anxiolytic and anxiogenic drugs on exploratory activity in a simple model of anxiety in mice. Neuropharmacology. 1989 Sep;28(9):901–905. doi: 10.1016/0028-3908(89)90188-3. [DOI] [PubMed] [Google Scholar]
  19. Kubota K., Sugaya K., Matsuda I., Matsuoka Y., Terawaki Y. Reversal of antinociceptive effect of cholecystokinin by benzodiazepines and a benzodiazepine antagonist, Ro 15-1788. Jpn J Pharmacol. 1985 Jan;37(1):101–105. doi: 10.1254/jjp.37.101. [DOI] [PubMed] [Google Scholar]
  20. Lotti V. J., Chang R. S. A new potent and selective non-peptide gastrin antagonist and brain cholecystokinin receptor (CCK-B) ligand: L-365,260. Eur J Pharmacol. 1989 Mar 21;162(2):273–280. doi: 10.1016/0014-2999(89)90290-2. [DOI] [PubMed] [Google Scholar]
  21. Pellow S., Chopin P., File S. E., Briley M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 1985 Aug;14(3):149–167. doi: 10.1016/0165-0270(85)90031-7. [DOI] [PubMed] [Google Scholar]
  22. Rehfeld J. F. Immunochemical studies on cholecystokinin. II. Distribution and molecular heterogeneity in the central nervous system and small intestine of man and hog. J Biol Chem. 1978 Jun 10;253(11):4022–4030. [PubMed] [Google Scholar]
  23. Singh L., Lewis A. S., Field M. J., Hughes J., Woodruff G. N. Evidence for an involvement of the brain cholecystokinin B receptor in anxiety. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1130–1133. doi: 10.1073/pnas.88.4.1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Singh L., Oles R. J., Tricklebank M. D. Modulation of seizure susceptibility in the mouse by the strychnine-insensitive glycine recognition site of the NMDA receptor/ion channel complex. Br J Pharmacol. 1990 Feb;99(2):285–288. doi: 10.1111/j.1476-5381.1990.tb14695.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stamford J. A., Kruk Z. L., Millar J. Differential effects of dopamine agonists upon stimulated limbic and striatal dopamine release: in vivo voltammetric data. Br J Pharmacol. 1991 Jan;102(1):45–50. doi: 10.1111/j.1476-5381.1991.tb12130.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Vanderhaeghen J. J., Signeau J. C., Gepts W. New peptide in the vertebrate CNS reacting with antigastrin antibodies. Nature. 1975 Oct 16;257(5527):604–605. doi: 10.1038/257604a0. [DOI] [PubMed] [Google Scholar]
  27. Zetler G. Analgesia and ptosis caused by caerulein and cholecystokinin octapeptide (CCK-8). Neuropharmacology. 1980 May;19(5):415–422. doi: 10.1016/0028-3908(80)90047-7. [DOI] [PubMed] [Google Scholar]
  28. Zetler G. Central depressant effects of caerulein and cholecystokinin octapeptide (CCK-8) differ from those of diazepam and haloperidol. Neuropharmacology. 1981 Mar;20(3):277–283. doi: 10.1016/0028-3908(81)90134-9. [DOI] [PubMed] [Google Scholar]
  29. Zetler G. Neuropharmacological profile of cholecystokinin-like peptides. Ann N Y Acad Sci. 1985;448:448–469. doi: 10.1111/j.1749-6632.1985.tb29940.x. [DOI] [PubMed] [Google Scholar]
  30. de Montigny C. Cholecystokinin tetrapeptide induces panic-like attacks in healthy volunteers. Preliminary findings. Arch Gen Psychiatry. 1989 Jun;46(6):511–517. doi: 10.1001/archpsyc.1989.01810060031006. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES