Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Jun;103(2):1525–1529. doi: 10.1111/j.1476-5381.1991.tb09821.x

Early and late contraction induced by ouabain in human umbilical arteries.

K Sato 1, K Aoki 1
PMCID: PMC1908359  PMID: 1909202

Abstract

1. Ouabain (3 x 10(-7)-10(-4) M) evoked a biphasic contraction in human umbilical artery that consisted of an early and a late contraction. The Ca(2+)-antagonists, verapamil (10(-7)-10(-5)) M), diltiazem (10(-7)-(10(-5)) M) and nifedipine (10(-9)-10(-7)) M) inhibited the early but not the late contraction. Caffeine (5 mM) changed neither the magnitude of the peak of the biphasic contraction nor the time needed to reach it. 2. Sodium concentration reduction (140 to 0 mM, replaced by N-methyl-D-glucamine, NMG) produced dose-dependent contraction of the arterial strip in 2.5 mM Ca2+ solution after the first treatment with verapamil (10(-5) M) and caffeine (5 mM), but not in Ca(2+)-free solution. 3. After prior treatment with verapamil and caffeine, the amplitude of the ouabain (10(-4) M)-induced late contraction varied, depending on the concentration of Ca2+ (0-2.5 mM) in the medium. 4. Amiloride (5 x 10(-5) M-5 x 10(-4) M), an inhibitor of the Na(+)-Ca2+ exchange system, produced dose-dependent inhibition of the late contraction induced by ouabain (10(-5) M) after prior treatment with verapamil and caffeine. 5. The time needed to reach the peak tension induced by monensin (5 x 10(-7) M) together with ouabain (10(-6) M) was less than that with ouabain alone, but the magnitude of the peak tension was not changed. 6. These results suggest that the early and late contractions caused by ouabain respectively produce a Ca2+ influx through voltage-sensitive Ca2+ channels and Ca2+ entry through sodium-calcium (Na(+)-Ca2+) exchange.

Full text

PDF
1529

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aickin C. C., Brading A. F., Burdyga T. V. Evidence for sodium-calcium exchange in the guinea-pig ureter. J Physiol. 1984 Feb;347:411–430. doi: 10.1113/jphysiol.1984.sp015073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashida T., Blaustein M. P. Regulation of cell calcium and contractility in mammalian arterial smooth muscle: the role of sodium-calcium exchange. J Physiol. 1987 Nov;392:617–635. doi: 10.1113/jphysiol.1987.sp016800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blaustein M. P. The interrelationship between sodium and calcium fluxes across cell membranes. Rev Physiol Biochem Pharmacol. 1974;70:33–82. doi: 10.1007/BFb0034293. [DOI] [PubMed] [Google Scholar]
  4. Bohr D. F., Seidel C., Sobieski J. Possible role of sodium-calcium pumps in tension development of vascular smooth muscle. Microvasc Res. 1969 Oct;1(4):335–343. doi: 10.1016/0026-2862(69)90012-0. [DOI] [PubMed] [Google Scholar]
  5. Bonaccorsi A., Hermsmeyer K., Smith C. B., Bohr D. F. Norepinephrine release in isolated arteries induced by K-free solution. Am J Physiol. 1977 Feb;232(2):H140–H145. doi: 10.1152/ajpheart.1977.232.2.H140. [DOI] [PubMed] [Google Scholar]
  6. Bova S., Cargnelli G., Luciani S. Na/Ca exchange and tension development in vascular smooth muscle: effect of amiloride. Br J Pharmacol. 1988 Mar;93(3):601–608. doi: 10.1111/j.1476-5381.1988.tb10316.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burton J., Godfraind T. Sodium-calcium sites in smooth muscle and their accessibility to lanthanum. J Physiol. 1974 Sep;241(2):287–298. doi: 10.1113/jphysiol.1974.sp010656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gopalakrishnan V., Park L. E., Triggle C. R. The effect of the calcium channel agonist, Bay K-8644 on human vascular smooth muscle. Eur J Pharmacol. 1985 Jul 31;113(3):447–451. doi: 10.1016/0014-2999(85)90095-0. [DOI] [PubMed] [Google Scholar]
  9. Hayashi S., Park M. K. Neurogenic and myogenic contractile responses of dog mesenteric arteries to reduced K+ concentration and their interactions with ouabain. J Pharmacol Exp Ther. 1984 Sep;230(3):527–533. [PubMed] [Google Scholar]
  10. Hermsmeyer K., Harder D. Membrane ATPase mechanism of K+-return relaxation in arterial muscles of stroke-prone SHR and WKY. Am J Physiol. 1986 Apr;250(4 Pt 1):C557–C562. doi: 10.1152/ajpcell.1986.250.4.C557. [DOI] [PubMed] [Google Scholar]
  11. Ito K., Koike H., Miyamoto M., Ozaki H., Kishimoto T., Urakawa N. Long-term effects of captopril on cellular sodium content and mechanical properties of aortic smooth muscle from spontaneously hypertensive rats. J Pharmacol Exp Ther. 1981 Nov;219(2):520–525. [PubMed] [Google Scholar]
  12. Karaki H., Ozaki H., Urakawa N. Effects of ouabain and potassium-free solution on the contraction of isolated blood vessels. Eur J Pharmacol. 1978 Apr 15;48(4):439–443. doi: 10.1016/0014-2999(78)90172-3. [DOI] [PubMed] [Google Scholar]
  13. Katsuragi T., Fukushi Y., Suzuki T. Neuronal norepinephrine as mediator for ouabain-induced smooth muscle contraction. Eur J Pharmacol. 1978 Feb 15;47(4):407–413. doi: 10.1016/0014-2999(78)90121-8. [DOI] [PubMed] [Google Scholar]
  14. Lamb F. S., Moreland R. S., Webb R. C. Calcium and contractile responses to ouabain and potassium-free solution in aortae from spontaneously hypertensive rats. J Hypertens. 1988 Oct;6(10):821–828. [PubMed] [Google Scholar]
  15. Marín J., Sánchez-Ferrer C. F., Salaices M. Effects of ouabain on isolated cerebral and femoral arteries of the cat: a functional and biochemical study. Br J Pharmacol. 1988 Jan;93(1):43–52. doi: 10.1111/j.1476-5381.1988.tb11403.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ozaki H., Karaki H., Urakawa N. Possible role of Na-Ca exchange mechanism in the contractions induced in guinea-pig aorta by potassium free solution and ouabain. Naunyn Schmiedebergs Arch Pharmacol. 1978 Oct;304(3):203–209. doi: 10.1007/BF00507959. [DOI] [PubMed] [Google Scholar]
  17. Ozaki H., Kishimoto T., Karaki H., Urakawa N. Effects of the Na ionophore monensin on the contractile response and the movements of monovalent cations in the vascular smooth muscle of rabbit aorta. Naunyn Schmiedebergs Arch Pharmacol. 1982 Nov;321(2):140–144. doi: 10.1007/BF00518482. [DOI] [PubMed] [Google Scholar]
  18. SOMLYO A. V., WOO C. Y., SOMLYO A. P. RESPONSES OF NERVE-FREE VESSELS TO VASOACTIVE AMINES AND POLYPEPTIDES. Am J Physiol. 1965 Apr;208:748–753. doi: 10.1152/ajplegacy.1965.208.4.748. [DOI] [PubMed] [Google Scholar]
  19. Sato K., Aoki K. Biphasic contraction induced by ouabain in human umbilical arteries. Eur J Pharmacol. 1988 Dec 13;158(3):299–302. doi: 10.1016/0014-2999(88)90084-2. [DOI] [PubMed] [Google Scholar]
  20. V Euler U. S. Action of adrenaline, acetylcholine and other substances on nerve-free vessels (human placenta). J Physiol. 1938 Jul 14;93(2):129–143. doi: 10.1113/jphysiol.1938.sp003631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yang H. Y., Shum A. Y., Ng H. T., Chen C. F. Effect of ethanol on human umbilical artery and vein in vitro. Gynecol Obstet Invest. 1986;21(3):131–135. doi: 10.1159/000298942. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES