Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1992 Mar;105(3):703–707. doi: 10.1111/j.1476-5381.1992.tb09042.x

Dopamine release and metabolism in the rat frontal cortex, nucleus accumbens, and striatum: a comparison of acute clozapine and haloperidol.

F Karoum 1, M F Egan 1
PMCID: PMC1908433  PMID: 1628156

Abstract

1. The effects of the typical and typical neuroleptic agents clozapine (CLZ) (2.5-20 mg kg-1, i.p.) and haloperidol (Hal) (0.05-1.0 mg kg-1), were compared on dopamine release and metabolism in the rat prefrontal cortex (PFC), nucleus accumbens (ACC) and striatum (ST). Dopamine release was estimated by measuring the steady-state concentration of 3-methoxytyramine (3-MT) and the level of 3-MT 10 min after pargyline (3-MT accumulation); dopamine metabolism was evaluated from the steady-state concentrations of its acidic metabolites. 2. Both drugs increased 3-MT accumulation in the PFC in a dose-dependent manner. In contrast to Hal, CLZ failed to increase 3-MT accumulation in the ACC or ST. The ST was the region most sensitive to Hal in terms of 3-MT accumulation and, by inference, dopamine release. 3. Both CLZ and Hal dose-dependently elevated the concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in all 3 brain regions studied. The ACC appears to be the region most sensitive to these drugs in terms of changes in the levels of HVA. 4. The result of the present investigations suggest measurements of 3-MT production in the 3 brain regions analysed might be a useful and simple pharmacological tool in the search for atypical neuroleptic drugs with a selectivity of action for the cortical systems.

Full text

PDF
706

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altar C. A., Boyar W. C., Oei E., Wood P. L. Dopamine autoreceptors modulate the in vivo release of dopamine in the frontal, cingulate and entorhinal cortices. J Pharmacol Exp Ther. 1987 Jul;242(1):115–120. [PubMed] [Google Scholar]
  2. Altar C. A., Hauser K. Topography of substantia nigra innervation by D1 receptor-containing striatal neurons. Brain Res. 1987 Apr 28;410(1):1–11. doi: 10.1016/s0006-8993(87)80014-8. [DOI] [PubMed] [Google Scholar]
  3. Altar C. A., Wasley A. M., Liebman J., Gerhardt S., Kim H., Welch J. J., Wood P. L. CGS 10746B: an atypical antipsychotic candidate that selectively decreases dopamine release at behaviorally effective doses. Life Sci. 1986 Aug 25;39(8):699–705. doi: 10.1016/0024-3205(86)90017-2. [DOI] [PubMed] [Google Scholar]
  4. Andén N. E., Stock G. Effect of clozapine on the turnover of dopamine in the corpus striatum and in the limbic system. J Pharm Pharmacol. 1973 Apr;25(4):346–348. doi: 10.1111/j.2042-7158.1973.tb10025.x. [DOI] [PubMed] [Google Scholar]
  5. Barnes J. M., Barnes N. M., Champaneria S., Costall B., Naylor R. J. Characterisation and autoradiographic localisation of 5-HT3 receptor recognition sites identified with [3H]-(S)-zacopride in the forebrain of the rat. Neuropharmacology. 1990 Nov;29(11):1037–1045. doi: 10.1016/0028-3908(90)90110-d. [DOI] [PubMed] [Google Scholar]
  6. Bartholini G., Haefely W., Jalfre M., Keller H. H., Pletscher A. Effects of clozapine on cerebral catecholaminergic neurone systems. Br J Pharmacol. 1972 Dec;46(4):736–740. doi: 10.1111/j.1476-5381.1972.tb06898.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Besson M., Cheramy A., Feltz P., Glowinski J. Dopamine: spontaneous and drug-induced release from the caudate nucleus in the cat. Brain Res. 1971 Sep 24;32(2):407–424. doi: 10.1016/0006-8993(71)90333-7. [DOI] [PubMed] [Google Scholar]
  8. Boyar W. C., Altar C. A. Modulation of in vivo dopamine release by D2 but not D1 receptor agonists and antagonists. J Neurochem. 1987 Mar;48(3):824–831. doi: 10.1111/j.1471-4159.1987.tb05591.x. [DOI] [PubMed] [Google Scholar]
  9. Chiodo L. A., Bannon M. J., Grace A. A., Roth R. H., Bunney B. S. Evidence for the absence of impulse-regulating somatodendritic and synthesis-modulating nerve terminal autoreceptors on subpopulations of mesocortical dopamine neurons. Neuroscience. 1984 May;12(1):1–16. doi: 10.1016/0306-4522(84)90133-7. [DOI] [PubMed] [Google Scholar]
  10. Chiodo L. A., Bunney B. S. Possible mechanisms by which repeated clozapine administration differentially affects the activity of two subpopulations of midbrain dopamine neurons. J Neurosci. 1985 Sep;5(9):2539–2544. doi: 10.1523/JNEUROSCI.05-09-02539.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chiodo L. A., Bunney B. S. Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. J Neurosci. 1983 Aug;3(8):1607–1619. doi: 10.1523/JNEUROSCI.03-08-01607.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Coward D. M., Imperato A., Urwyler S., White T. G. Biochemical and behavioural properties of clozapine. Psychopharmacology (Berl) 1989;99 (Suppl):S6–12. doi: 10.1007/BF00442552. [DOI] [PubMed] [Google Scholar]
  13. Demarest K. T., Moore K. E. Comparison of dopamine synthesis regulation in the terminals of nigrostriatal, mesolimbic, tuberoinfundibular and tuberohypophyseal neurons. J Neural Transm. 1979;46(4):263–277. doi: 10.1007/BF01259333. [DOI] [PubMed] [Google Scholar]
  14. Di Giulio A. M., Groppetti A., Cattabeni F., Galli C. L., Maggi A., Algeri S., Ponzio F. Significance of dopamine metabolites in the evaluation of drugs acting on dopaminergic neurons. Eur J Pharmacol. 1978 Nov 15;52(2):201–207. doi: 10.1016/0014-2999(78)90207-8. [DOI] [PubMed] [Google Scholar]
  15. Egan M. F., Karoum F., Wyatt R. J. Effects of acute and chronic clozapine and haloperidol administration on 3-methoxytyramine accumulation in rat prefrontal cortex, nucleus accumbens and striatum. Eur J Pharmacol. 1991 Jun 25;199(2):191–199. doi: 10.1016/0014-2999(91)90457-2. [DOI] [PubMed] [Google Scholar]
  16. Farde L., Wiesel F. A., Nordström A. L., Sedvall G. D1- and D2-dopamine receptor occupancy during treatment with conventional and atypical neuroleptics. Psychopharmacology (Berl) 1989;99 (Suppl):S28–S31. doi: 10.1007/BF00442555. [DOI] [PubMed] [Google Scholar]
  17. Fox J. L. Dioxins' health effects remain puzzling. In vitro tests suggests it causes cancer, medical results remain ambiguous. Science. 1983 Sep 16;221(4616):1161–1162. doi: 10.1126/science.6612329. [DOI] [PubMed] [Google Scholar]
  18. Fuxe K., von Euler G., Agnati L. F., Saller C. F., Salama A., Goldstein M. Acute treatment with clozapine blocks D1 dopamine receptor binding in discrete brain areas of the male rat. Neurosci Lett. 1989 Nov 20;106(1-2):169–174. doi: 10.1016/0304-3940(89)90221-8. [DOI] [PubMed] [Google Scholar]
  19. Gonon F. G., Buda M. J. Regulation of dopamine release by impulse flow and by autoreceptors as studied by in vivo voltammetry in the rat striatum. Neuroscience. 1985 Mar;14(3):765–774. doi: 10.1016/0306-4522(85)90141-1. [DOI] [PubMed] [Google Scholar]
  20. Gonon F. G., Navarre F., Buda M. J. In vivo monitoring of dopamine release in the rat brain with differential normal pulse voltammetry. Anal Chem. 1984 Mar;56(3):573–575. doi: 10.1021/ac00267a060. [DOI] [PubMed] [Google Scholar]
  21. Groppetti A., Parenti M., Galli C. L., Bugatti A., Cattabeni F., Di Giulio A. M., Racagni G. 3-Methoxytyramine and different neuroleptics: dissociation from HVA and DOPAC. Life Sci. 1978 Oct 30;23(17-18):1763–1768. doi: 10.1016/0024-3205(78)90105-4. [DOI] [PubMed] [Google Scholar]
  22. Huff R. M., Molinoff P. B. Quantitative determination of dopamine receptor subtypes not linked to activation of adenylate cyclase in rat striatum. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7561–7565. doi: 10.1073/pnas.79.23.7561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hyttel J. SCH 23390 - the first selective dopamine D-1 antagonist. Eur J Pharmacol. 1983 Jul 15;91(1):153–154. doi: 10.1016/0014-2999(83)90381-3. [DOI] [PubMed] [Google Scholar]
  24. Imperato A., Di Chiara G. Dopamine release and metabolism in awake rats after systemic neuroleptics as studied by trans-striatal dialysis. J Neurosci. 1985 Feb;5(2):297–306. doi: 10.1523/JNEUROSCI.05-02-00297.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Imperato A., Di Chiara G. Trans-striatal dialysis coupled to reverse phase high performance liquid chromatography with electrochemical detection: a new method for the study of the in vivo release of endogenous dopamine and metabolites. J Neurosci. 1984 Apr;4(4):966–977. doi: 10.1523/JNEUROSCI.04-04-00966.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Invernizzi R., Morali F., Pozzi L., Samanin R. Effects of acute and chronic clozapine on dopamine release and metabolism in the striatum and nucleus accumbens of conscious rats. Br J Pharmacol. 1990 Aug;100(4):774–778. doi: 10.1111/j.1476-5381.1990.tb14091.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Iorio L. C., Barnett A., Leitz F. H., Houser V. P., Korduba C. A. SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. J Pharmacol Exp Ther. 1983 Aug;226(2):462–468. [PubMed] [Google Scholar]
  28. Kane J., Honigfeld G., Singer J., Meltzer H. Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry. 1988 Sep;45(9):789–796. doi: 10.1001/archpsyc.1988.01800330013001. [DOI] [PubMed] [Google Scholar]
  29. Karoum F., Suddath R. L., Wyatt R. J. Chronic cocaine and rat brain catecholamines: long-term reduction in hypothalamic and frontal cortex dopamine metabolism. Eur J Pharmacol. 1990 Sep 4;186(1):1–8. doi: 10.1016/0014-2999(90)94054-2. [DOI] [PubMed] [Google Scholar]
  30. Kehr W. 3-Methoxytyramine and normetanephrine as indicators of dopamine and noradrenaline release in mouse brain in vivo. J Neural Transm. 1981;50(2-4):165–178. doi: 10.1007/BF01249138. [DOI] [PubMed] [Google Scholar]
  31. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  32. McMillen B. A., Shore P. A. Comparative effects of clozapine and alpha-adrenoceptor blocking drugs on regional noradrenaline metabolism in rat brain. Eur J Pharmacol. 1978 Nov 15;52(2):225–230. doi: 10.1016/0014-2999(78)90210-8. [DOI] [PubMed] [Google Scholar]
  33. Meltzer H. Y. Clinical studies on the mechanism of action of clozapine: the dopamine-serotonin hypothesis of schizophrenia. Psychopharmacology (Berl) 1989;99 (Suppl):S18–S27. doi: 10.1007/BF00442554. [DOI] [PubMed] [Google Scholar]
  34. Moleman P., Bruinvels J., van Valkenburg C. F. On the relation between haloperidol-induced alterations in DA release and DA metabolism in rat striatum. Life Sci. 1978 Aug 14;23(6):611–615. doi: 10.1016/0024-3205(78)90041-3. [DOI] [PubMed] [Google Scholar]
  35. Mora F., Myers R. D. Brain self-stimulation: direct evidence for the involvement of dopamine in the prefrontal cortex. Science. 1977 Sep 30;197(4311):1387–1389. doi: 10.1126/science.897677. [DOI] [PubMed] [Google Scholar]
  36. Nissbrandt H., Sundström E., Jonsson G., Hjorth S., Carlsson A. Synthesis and release of dopamine in rat brain: comparison between substantia nigra pars compacts, pars reticulata, and striatum. J Neurochem. 1989 Apr;52(4):1170–1182. doi: 10.1111/j.1471-4159.1989.tb01863.x. [DOI] [PubMed] [Google Scholar]
  37. Ponzio F., Achilli G., Perego C., Algeri S. Differential effects of certain dopaminergic drugs on the striatal concentration of dopamine metabolites, with special reference to 3-methoxytramine. Neurosci Lett. 1981 Nov 18;27(1):61–67. doi: 10.1016/0304-3940(81)90206-8. [DOI] [PubMed] [Google Scholar]
  38. Roth R. H., Murrin L. C., Walters J. R. Central dopaminergic neurons: effects of alterations in impulse flow on the accumulation of dihydroxyphenylacetic acid. Eur J Pharmacol. 1976 Mar;36(1):163–171. doi: 10.1016/0014-2999(76)90268-5. [DOI] [PubMed] [Google Scholar]
  39. Rupniak N. M., Hall M. D., Mann S., Fleminger S., Kilpatrick G., Jenner P., Marsden C. D. Chronic treatment with clozapine, unlike haloperidol, does not induce changes in striatal D-2 receptor function in the rat. Biochem Pharmacol. 1985 Aug 1;34(15):2755–2763. doi: 10.1016/0006-2952(85)90577-5. [DOI] [PubMed] [Google Scholar]
  40. Saller C. F., Salama A. I. 3-Methoxytyramine accumulation: effects of typical neuroleptics and various atypical compounds. Naunyn Schmiedebergs Arch Pharmacol. 1986 Oct;334(2):125–132. doi: 10.1007/BF00505811. [DOI] [PubMed] [Google Scholar]
  41. Santiago M., Westerink B. H. Characterization and pharmacological responsiveness of dopamine release recorded by microdialysis in the substantia nigra of conscious rats. J Neurochem. 1991 Sep;57(3):738–747. doi: 10.1111/j.1471-4159.1991.tb08214.x. [DOI] [PubMed] [Google Scholar]
  42. Setler P. E., Sarau H. M., Zirkle C. L., Saunders H. L. The central effects of a novel dopamine agonist. Eur J Pharmacol. 1978 Aug 15;50(4):419–430. doi: 10.1016/0014-2999(78)90148-6. [DOI] [PubMed] [Google Scholar]
  43. Snyder S. H., Banerjee S. P., Yamamura H. I., Greenberg D. Drugs, neurotransmitters, and schizophrenia. Science. 1974 Jun 21;184(4143):1243–1253. doi: 10.1126/science.184.4143.1243. [DOI] [PubMed] [Google Scholar]
  44. Stevens J. R. An anatomy of schizophrenia? Arch Gen Psychiatry. 1973 Aug;29(2):177–189. doi: 10.1001/archpsyc.1973.04200020023003. [DOI] [PubMed] [Google Scholar]
  45. Stille G., Lauener H., Eichenberger E. The pharmacology of 8-chloro-11-(4-methyl-1-piperazinyl)-5H-dibenzo(b,e)(1,4)diazepine (clozapine). Farmaco Prat. 1971 Oct;26(10):603–625. [PubMed] [Google Scholar]
  46. Talmaciu R. K., Hoffmann I. S., Cubeddu L. X. Dopamine autoreceptors modulate dopamine release from the prefrontal cortex. J Neurochem. 1986 Sep;47(3):865–870. doi: 10.1111/j.1471-4159.1986.tb00691.x. [DOI] [PubMed] [Google Scholar]
  47. Waldmeier P. C., Lauber J., Blum W., Richter W. J. 3-Methoxytyramine: its suitability as an indicator of synaptic dopamine release. Naunyn Schmiedebergs Arch Pharmacol. 1981 Jan;315(3):219–225. doi: 10.1007/BF00499838. [DOI] [PubMed] [Google Scholar]
  48. Westerink B. H., Bosker F. J., Wirix E. Formation and metabolism of dopamine in nine areas of the rat brain: modifications by haloperidol. J Neurochem. 1984 May;42(5):1321–1327. doi: 10.1111/j.1471-4159.1984.tb02790.x. [DOI] [PubMed] [Google Scholar]
  49. Westerink B. H., Korf J. Regional rat brain levels of 3,4-dihydroxyphenylacetic acid and homovanillic acid: concurrent fluorometric measurement and influence of drugs. Eur J Pharmacol. 1976 Aug;38(2):281–291. doi: 10.1016/0014-2999(76)90331-9. [DOI] [PubMed] [Google Scholar]
  50. Wilk S., Watson E., Stanley M. E. Differential sensitivity of two dopaminergic structures in rat brain to haloperidol and to clozapine. J Pharmacol Exp Ther. 1975 Nov;195(2):265–270. [PubMed] [Google Scholar]
  51. Wood P. L. A selected ion monitoring assay for dopamine and its metabolites using negative chemical ionization. Biomed Mass Spectrom. 1982 Jul;9(7):302–306. doi: 10.1002/bms.1200090706. [DOI] [PubMed] [Google Scholar]
  52. Wood P. L. Actions of GABAergic agents on dopamine metabolism in the nigrostriatal pathway of the rat. J Pharmacol Exp Ther. 1982 Sep;222(3):674–679. [PubMed] [Google Scholar]
  53. Wood P. L., Altar C. A. Dopamine release in vivo from nigrostriatal, mesolimbic, and mesocortical neurons: utility of 3-methoxytyramine measurements. Pharmacol Rev. 1988 Sep;40(3):163–187. [PubMed] [Google Scholar]
  54. Wood P. L., Kim H. S., Altar C. A. In vivo assessment of dopamine and norepinephrine release in rat neocortex: gas chromatography-mass spectrometry measurement of 3-methoxytyramine and normetanephrine. J Neurochem. 1987 Feb;48(2):574–579. doi: 10.1111/j.1471-4159.1987.tb04131.x. [DOI] [PubMed] [Google Scholar]
  55. Wood P. L., Kim H. S., Marien M. R. Intracerebral dialysis: direct evidence for the utility of 3-MT measurements as an index of dopamine release. Life Sci. 1987 Jul 6;41(1):1–5. doi: 10.1016/0024-3205(87)90549-2. [DOI] [PubMed] [Google Scholar]
  56. Wood P. L., McQuade P. S., Etienne P., Lal S., Nair N. P. Differential actions of classical and atypical neuroleptics on mouse nigrostriatal neurons. Prog Neuropsychopharmacol Biol Psychiatry. 1983;7(4-6):765–768. doi: 10.1016/0278-5846(83)90062-3. [DOI] [PubMed] [Google Scholar]
  57. Wood P. L. Opioid regulation of CNS dopaminergic pathways: a review of methodology, receptor types, regional variations and species differences. Peptides. 1983 Sep-Oct;4(5):595–601. doi: 10.1016/0196-9781(83)90003-7. [DOI] [PubMed] [Google Scholar]
  58. Zetterström T., Sharp T., Ungerstedt U. Effect of neuroleptic drugs on striatal dopamine release and metabolism in the awake rat studied by intracerebral dialysis. Eur J Pharmacol. 1984 Oct 30;106(1):27–37. doi: 10.1016/0014-2999(84)90674-5. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES