Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Dec;104(4):779–786. doi: 10.1111/j.1476-5381.1991.tb12506.x

Beneficial effect of beraprost, a prostacyclin-mimetic agent, on post-hypoxic recovery of cardiac function and metabolism in rabbit isolated hearts.

K Tanonaka 1, Y Maruyama 1, S Takeo 1
PMCID: PMC1908847  PMID: 1810595

Abstract

1. The present study was undertaken to determine whether beraprost, a stable prostacyclin-mimetic agent, may exert a beneficial effect on post-hypoxic recovery of cardiac function and metabolism. Isolated rabbit hearts were perfused by the Langendorff method for 20 min under glucose-free hypoxic conditions, followed by 45 min reoxygenation in the presence of glucose, and their functional and metabolic changes with or without beraprost-treatment were examined. 2. Hypoxic insult induced cessation of cardiac contractile force, depletion of myocardial high-energy phosphates, accumulation of tissue calcium, and release of creatine kinase and ATP metabolites. Subsequent reoxygenation resulted in a poor recovery of cardiac contractile force (less than 10% of the pre-hypoxic value), a poor restoration of high-energy phosphates, and increase in calcium content. A further release of creatine kinase and ATP metabolites from the heart was observed during reoxygenation. 3. Treatment with 0.45 microM beraprost during the whole hypoxic period resulted in a significant suppression of the increase in tissue calcium, and the release of creatine kinase and ATP metabolites during hypoxic perfusion. This treatment also elicited a significant post-hypoxic recovery of the cardiac contractile force and the tissue high-energy phosphates. Reoxygenation-induced release of creatine kinase and ATP metabolites was also prevented by treatment with beraprost. 4. When hearts were treated with prostacyclin sodium (0.50 microM) in the same manner for the purpose of comparison, similar improvement of post-hypoxic contractile and metabolic recovery were observed. 5. These results demonstrate that treatment with either beraprost or prostacyclin is beneficial for post-hypoxic recovery of cardiac function and metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
781

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiba T., Miyazaki M., Toda N. Vasodilator actions of TRK-100, a new prostaglandin I2 analogue. Br J Pharmacol. 1986 Dec;89(4):703–711. doi: 10.1111/j.1476-5381.1986.tb11174.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chiariello M., Golino P., Cappelli-Bigazzi M., Ambrosio G., Tritto I., Salvatore M. Reduction in infarct size by the prostacyclin analogue iloprost (ZK 36374) after experimental coronary artery occlusion-reperfusion. Am Heart J. 1988 Mar;115(3):499–504. doi: 10.1016/0002-8703(88)90796-x. [DOI] [PubMed] [Google Scholar]
  3. Darius H., Osborne J. A., Reibel D. K., Lefer A. M. Protective actions of a stable prostacyclin analog in ischemia induced membrane damage in rat myocardium. J Mol Cell Cardiol. 1987 Mar;19(3):243–250. doi: 10.1016/s0022-2828(87)80591-6. [DOI] [PubMed] [Google Scholar]
  4. Darius H., Thomsen T., Schrör K. Cardiovascular actions in vitro and cardioprotective effects in vivo of nileprost, a mixed type PGI2/PGE2 agonist. J Cardiovasc Pharmacol. 1987 Aug;10(2):144–152. doi: 10.1097/00005344-198708000-00003. [DOI] [PubMed] [Google Scholar]
  5. Das D. K., Engelman R. M., Rousou J. A., Breyer R. H., Otani H., Lemeshow S. Role of membrane phospholipids in myocardial injury induced by ischemia and reperfusion. Am J Physiol. 1986 Jul;251(1 Pt 2):H71–H79. doi: 10.1152/ajpheart.1986.251.1.H71. [DOI] [PubMed] [Google Scholar]
  6. Edlund A., Sahlin K., Wennmalm A. Effect of prostacyclin on the severity of ischaemic injury in rabbit hearts subjected to coronary ligation. J Mol Cell Cardiol. 1986 Oct;18(10):1067–1076. doi: 10.1016/s0022-2828(86)80293-0. [DOI] [PubMed] [Google Scholar]
  7. Ferrari R., Cargnoni A., Ceconi C., Curello S., Belloli S., Albertini A., Visioli O. Protective effect of a prostacyclin-mimetic on the ischaemic-reperfused rabbit myocardium. J Mol Cell Cardiol. 1988 Dec;20(12):1095–1106. doi: 10.1016/0022-2828(88)90590-1. [DOI] [PubMed] [Google Scholar]
  8. Ferrari R., Cargnoni A., Curello S., Boffa G. M., Ceconi C. Effects of iloprost (ZK 36374) on glutathione status during ischaemia and reperfusion of rabbit isolated hearts. Br J Pharmacol. 1989 Oct;98(2):678–684. doi: 10.1111/j.1476-5381.1989.tb12643.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grover G. J., Schumacher W. A., Simon M., Parham C. The effect of the thromboxane A2/prostaglandin endoperoxide receptor antagonist SQ 30,741 on myocardial infarct size and blood flow during myocardial ischemia and reperfusion. J Cardiovasc Pharmacol. 1988 Dec;12(6):701–709. doi: 10.1097/00005344-198812000-00012. [DOI] [PubMed] [Google Scholar]
  10. Grover G. J., Sleph P. G., Weiss H. R. Effect of thromboxane receptor blockade on oxygen supply/consumption variables during reperfusion in the anesthetized dog. J Pharmacol Exp Ther. 1990 Jun;253(3):1097–1102. [PubMed] [Google Scholar]
  11. Hamberg M., Svensson J., Samuelsson B. Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2994–2998. doi: 10.1073/pnas.72.8.2994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Karmazyn M., Dhalla N. S. Physiological and pathophysiological aspects of cardiac prostaglandins. Can J Physiol Pharmacol. 1983 Nov;61(11):1207–1225. doi: 10.1139/y83-180. [DOI] [PubMed] [Google Scholar]
  13. Lefer A. M., Ogletree M. L., Smith J. B., Silver M. J., Nicolaou K. C., Barnette W. E., Gasic G. P. Prostacyclin: a potentially valuable agent for preserving myocardial tissue in acute myocardial ischemia. Science. 1978 Apr 7;200(4337):52–54. doi: 10.1126/science.345441. [DOI] [PubMed] [Google Scholar]
  14. Lesnefsky E. J., Repine J. E., Horwitz L. D. Deferoxamine pretreatment reduces canine infarct size and oxidative injury. J Pharmacol Exp Ther. 1990 Jun;253(3):1103–1109. [PubMed] [Google Scholar]
  15. Moncada S., Gryglewski R., Bunting S., Vane J. R. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature. 1976 Oct 21;263(5579):663–665. doi: 10.1038/263663a0. [DOI] [PubMed] [Google Scholar]
  16. Muxfeldt M., Schaper W. The activity of xanthine oxidase in heart of pigs, guinea pigs, rabbits, rats, and humans. Basic Res Cardiol. 1987 Sep-Oct;82(5):486–492. doi: 10.1007/BF01907096. [DOI] [PubMed] [Google Scholar]
  17. Nayler W. G., Yepez C. E., Poole-Wilson P. A. The effect of beta-adrenoceptor and Ca2+ antagonist drugs on the hypoxia-induced increased in resting tension. Cardiovasc Res. 1978 Nov;12(11):666–674. doi: 10.1093/cvr/12.11.666. [DOI] [PubMed] [Google Scholar]
  18. Nishio S., Matsuura H., Kanai N., Fukatsu Y., Hirano T., Nishikawa N., Kameoka K., Umetsu T. The in vitro and ex vivo antiplatelet effect of TRK-100, a stable prostacyclin analog, in several species. Jpn J Pharmacol. 1988 May;47(1):1–10. doi: 10.1254/jjp.47.1. [DOI] [PubMed] [Google Scholar]
  19. Otani H., Engelman R. M., Rousou J. A., Breyer R. H., Das D. K. Enhanced prostaglandin synthesis due to phospholipid breakdown in ischemic-reperfused myocardium. Control of its production by a phospholipase inhibitor or free radical scavengers. J Mol Cell Cardiol. 1986 Sep;18(9):953–961. doi: 10.1016/s0022-2828(86)80009-8. [DOI] [PubMed] [Google Scholar]
  20. Otani H., Prasad M. R., Jones R. M., Das D. K. Mechanism of membrane phospholipid degradation in ischemic-reperfused rat hearts. Am J Physiol. 1989 Jul;257(1 Pt 2):H252–H258. doi: 10.1152/ajpheart.1989.257.1.H252. [DOI] [PubMed] [Google Scholar]
  21. Pi X. J., Chen X. Captopril and ramiprilat protect against free radical injury in isolated working rat hearts. J Mol Cell Cardiol. 1989 Dec;21(12):1261–1271. doi: 10.1016/0022-2828(89)90672-x. [DOI] [PubMed] [Google Scholar]
  22. Pieper G. M. Arachidonic acid causes postischemic dysfunction in control but not diabetic hearts. Am J Physiol. 1990 Apr;258(4 Pt 2):H923–H930. doi: 10.1152/ajpheart.1990.258.4.H923. [DOI] [PubMed] [Google Scholar]
  23. Pissarek M., Goos H., Nöhring J., Graff J., Buller G., Beyerdörfer I., Mest H. J., Lindenau K. F., Krause E. G. Prostacyclin and iloprost: equal efficiency in preserving high energy phosphates in the dog heart following coronary artery ligation. Basic Res Cardiol. 1987 Nov-Dec;82(6):566–575. doi: 10.1007/BF01907227. [DOI] [PubMed] [Google Scholar]
  24. Sakai K., Ito K., Ogawa K. Roles of endogenous prostacyclin and thromboxane A2 in the ischemic canine heart. J Cardiovasc Pharmacol. 1982 Jan-Feb;4(1):129–135. doi: 10.1097/00005344-198201000-00021. [DOI] [PubMed] [Google Scholar]
  25. Schrör K., Köhler P., Müller M., Peskar B. A., Rösen P. Prostacyclin-thromboxane interactions in the platelet-perfused in vitro heart. Am J Physiol. 1981 Jul;241(1):H18–H25. doi: 10.1152/ajpheart.1981.241.1.H18. [DOI] [PubMed] [Google Scholar]
  26. Schrör K., Ohlendorf R., Darius H. Beneficial effects of a new carbacyclin derivative, ZK 36 374, in acute myocardial ischemia. J Pharmacol Exp Ther. 1981 Oct;219(1):243–249. [PubMed] [Google Scholar]
  27. Takeo S., Tanonaka K., Matsumoto M., Miyake K., Minematsu R. Cardioprotective action of alpha-blocking agents, phentolamine and bunazosin, on hypoxic and reoxygenated myocardium. J Pharmacol Exp Ther. 1988 Aug;246(2):674–681. [PubMed] [Google Scholar]
  28. Takeo S., Tanonaka K., Miyake K., Imago M. Adenine nucleotide metabolites are beneficial for recovery of cardiac contractile force after hypoxia. J Mol Cell Cardiol. 1988 Mar;20(3):187–199. doi: 10.1016/s0022-2828(88)80052-x. [DOI] [PubMed] [Google Scholar]
  29. Takeo S., Tanonaka K., Shimizu K., Hirai K., Miyake K., Minematsu R. Beneficial effects of lidocaine and disopyramide on oxygen-deficiency-induced contractile failure and metabolic disturbance in isolated rabbit hearts. J Pharmacol Exp Ther. 1989 Jan;248(1):306–314. [PubMed] [Google Scholar]
  30. Takeo S., Tanonaka K., Tazuma Y., Fukao N., Yoshikawa C., Fukumoto T., Tanaka T. Diltiazem and verapamil reduce the loss of adenine nucleotide metabolites from hypoxic hearts. J Mol Cell Cardiol. 1988 May;20(5):443–456. doi: 10.1016/s0022-2828(88)80136-6. [DOI] [PubMed] [Google Scholar]
  31. Takeo S., Tanonaka K., Tazuma Y., Miyake K., Murai R. Possible mechanism by which coenzyme Q10 improves reoxygenation-induced recovery of cardiac contractile force after hypoxia. J Pharmacol Exp Ther. 1987 Dec;243(3):1131–1138. [PubMed] [Google Scholar]
  32. Thiemermann C., Schrör K. Comparison of the thromboxane synthetase inhibitor dazoxiben and the prostacyclin mimetic iloprost in an animal model of acute ischaemia and reperfusion. Biomed Biochim Acta. 1984;43(8-9):S151–S154. [PubMed] [Google Scholar]
  33. Toda N. Responses of human, monkey and dog coronary arteries in vitro to carbocyclic thromboxane A2 and vasodilators. Br J Pharmacol. 1984 Oct;83(2):399–408. doi: 10.1111/j.1476-5381.1984.tb16500.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Umetsu T., Murata T., Tanaka Y., Osada E., Nishio S. Antithrombotic effect of TRK-100, a novel, stable PGI2 analogue. Jpn J Pharmacol. 1987 Jan;43(1):81–90. doi: 10.1254/jjp.43.81. [DOI] [PubMed] [Google Scholar]
  35. de Deckere E. A., Nugteren D. H., Ten Hoor F. Prostacyclin is the major prostaglandin released from the isolated perfused rabbit and rat heart. Nature. 1977 Jul 14;268(5616):160–163. doi: 10.1038/268160a0. [DOI] [PubMed] [Google Scholar]
  36. de Langen C. D., van Gilst W. H., Wesseling H. Sustained protection by iloprost of the porcine heart in the acute and chronic phases of myocardial infarction. J Cardiovasc Pharmacol. 1985 Sep-Oct;7(5):924–928. doi: 10.1097/00005344-198509000-00017. [DOI] [PubMed] [Google Scholar]
  37. van Gilst W. H., Boonstra P. W., Terpstra J. A., Wildevuur C. R., de Langen C. D. Improved functional recovery of the isolated rat heart after 24 hours of hypothermic arrest with a stable prostacyclin analogue (ZK 36 374). J Mol Cell Cardiol. 1983 Nov;15(11):789–792. doi: 10.1016/0022-2828(83)90338-3. [DOI] [PubMed] [Google Scholar]
  38. van der Giessen W. J., Schoutsen B., Tijssen J. G., Verdouw P. D. Iloprost (ZK 36374) enhances recovery of regional myocardial function during reperfusion after coronary artery occlusion in the pig. Br J Pharmacol. 1986 Jan;87(1):23–27. doi: 10.1111/j.1476-5381.1986.tb10152.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES