Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Dec;104(4):978–986. doi: 10.1111/j.1476-5381.1991.tb12536.x

Potentiation by endothelin-1 of 5-hydroxytryptamine-induced contraction in coronary artery of the pig.

K Nakayama 1, Y Ishigai 1, H Uchida 1, Y Tanaka 1
PMCID: PMC1908859  PMID: 1810605

Abstract

1. In order to elucidate the physiological and potential pathological roles of endothelin-1 (ET-1) in coronary artery contraction and relaxation, we undertook the present study to examine the action of ET-1 itself, and the combined effects of ET-1 with vasoconstrictor agonists such as acetylcholine (ACh), histamine, and 5-hydroxytryptamine (5-HT), all of which have been implicated in the genesis of coronary spasm. 2. Isometric tension and cytosolic Ca2+ concentration ([Ca2+]i) in a ring segment of porcine coronary artery loaded with fura-2 were measured simultaneously. 3. ET-1 contracted the artery in a concentration-dependent manner; and nisoldipine, a Ca2+ channel blocking drug of the 1,4-dihydropyridine type, antagonized the ET-1 action non-competitively. A radio-receptor binding assay also indicated the mutually exclusive binding of ET-1 and (+)-[3H]-PN200-110, a Ca2+ channel ligand, to the membrane fraction of porcine coronary artery. 4. ET-1 (10-100 pM) increased tension and [Ca2+]i in a parallel manner, while at higher concentrations (1-10 nM) it produced further contraction with a small increase in [Ca2+]i. 5. ET-1 (30-100 pM) selectively potentiated the 5-HT-induced contraction 1.5 to 2 times over the control without causing a significant increase in [Ca2+]i, which seems to be qualitatively similar to a tumour promoting phorbol ester, 12-deoxyphorbol 13-isobutylate (DPB). Bay K 8644 (10 nM), on the other hand, potentiated the contraction in response to practically all agonists used and affected a concomitant increase in [Ca2+]i.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
978

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARUNLAKSHANA O., SCHILD H. O. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother. 1959 Mar;14(1):48–58. doi: 10.1111/j.1476-5381.1959.tb00928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ando K., Hirata Y., Shichiri M., Emori T., Marumo F. Presence of immunoreactive endothelin in human plasma. FEBS Lett. 1989 Mar 13;245(1-2):164–166. doi: 10.1016/0014-5793(89)80213-3. [DOI] [PubMed] [Google Scholar]
  3. Ashton J. H., Benedict C. R., Fitzgerald C., Raheja S., Taylor A., Campbell W. B., Buja L. M., Willerson J. T. Serotonin as a mediator of cyclic flow variations in stenosed canine coronary arteries. Circulation. 1986 Mar;73(3):572–578. doi: 10.1161/01.cir.73.3.572. [DOI] [PubMed] [Google Scholar]
  4. Barrett V. J., Leff P., Martin G. R., Richardson P. J. Pharmacological analysis of the interaction between Bay K 8644 and 5-HT in rabbit aorta. Br J Pharmacol. 1986 Mar;87(3):487–494. doi: 10.1111/j.1476-5381.1986.tb10190.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berridge M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984 Jun 1;220(2):345–360. doi: 10.1042/bj2200345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  7. Danthuluri N. R., Brock T. A. Endothelin receptor-coupling mechanisms in vascular smooth muscle: a role for protein kinase C. J Pharmacol Exp Ther. 1990 Aug;254(2):393–399. [PubMed] [Google Scholar]
  8. DePover A., Matlib M. A., Lee S. W., Dubé G. P., Grupp I. L., Grupp G., Schwartz A. Specific binding of [3H]nitrendipine to membranes from coronary arteries and heart in relation to pharmacological effects. Paradoxical stimulation by diltiazem. Biochem Biophys Res Commun. 1982 Sep 16;108(1):110–117. doi: 10.1016/0006-291x(82)91838-1. [DOI] [PubMed] [Google Scholar]
  9. Godfraind T., Mennig D., Morel N., Wibo M. Effect of endothelin-1 on calcium channel gating by agonists in vascular smooth muscle. J Cardiovasc Pharmacol. 1989;13 (Suppl 5):S112–S123. doi: 10.1097/00005344-198900135-00028. [DOI] [PubMed] [Google Scholar]
  10. Goto K., Kasuya Y., Matsuki N., Takuwa Y., Kurihara H., Ishikawa T., Kimura S., Yanagisawa M., Masaki T. Endothelin activates the dihydropyridine-sensitive, voltage-dependent Ca2+ channel in vascular smooth muscle. Proc Natl Acad Sci U S A. 1989 May;86(10):3915–3918. doi: 10.1073/pnas.86.10.3915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  12. Gu X. H., Liu J. J., Dillon J. S., Nayler W. G. The failure of endothelin to displace bound, radioactively-labelled, calcium antagonists (PN 200/110, D888 and diltiazem). Br J Pharmacol. 1989 Feb;96(2):262–264. doi: 10.1111/j.1476-5381.1989.tb11811.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Himpens B., Matthijs G., Somlyo A. P. Desensitization to cytoplasmic Ca2+ and Ca2+ sensitivities of guinea-pig ileum and rabbit pulmonary artery smooth muscle. J Physiol. 1989 Jun;413:489–503. doi: 10.1113/jphysiol.1989.sp017665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Itoh T., Kubota Y., Kuriyama H. Effects of a phorbol ester on acetylcholine-induced Ca2+ mobilization and contraction in the porcine coronary artery. J Physiol. 1988 Mar;397:401–419. doi: 10.1113/jphysiol.1988.sp017008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kaibuchi K., Takai Y., Sawamura M., Hoshijima M., Fujikura T., Nishizuka Y. Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation. J Biol Chem. 1983 Jun 10;258(11):6701–6704. [PubMed] [Google Scholar]
  16. Kasuya Y., Ishikawa T., Yanagisawa M., Kimura S., Goto K., Masaki T. Mechanism of contraction to endothelin in isolated porcine coronary artery. Am J Physiol. 1989 Dec;257(6 Pt 2):H1828–H1835. doi: 10.1152/ajpheart.1989.257.6.H1828. [DOI] [PubMed] [Google Scholar]
  17. Kasuya Y., Takuwa Y., Yanagisawa M., Kimura S., Goto K., Masaki T. Endothelin-1 induces vasoconstriction through two functionally distinct pathways in porcine coronary artery: contribution of phosphoinositide turnover. Biochem Biophys Res Commun. 1989 Jun 30;161(3):1049–1055. doi: 10.1016/0006-291x(89)91349-1. [DOI] [PubMed] [Google Scholar]
  18. Lee T. S., Chao T., Hu K. Q., King G. L. Endothelin stimulates a sustained 1,2-diacylglycerol increase and protein kinase C activation in bovine aortic smooth muscle cells. Biochem Biophys Res Commun. 1989 Jul 14;162(1):381–386. doi: 10.1016/0006-291x(89)92008-1. [DOI] [PubMed] [Google Scholar]
  19. Leff P., Morse J. M. Resultant pharmacological actions of verapamil: quantification of competitive 5-hydroxytryptamine antagonism in combination with calcium antagonism. J Pharmacol Exp Ther. 1987 Jan;240(1):284–287. [PubMed] [Google Scholar]
  20. Lückhoff A., Pohl U., Mülsch A., Busse R. Differential role of extra- and intracellular calcium in the release of EDRF and prostacyclin from cultured endothelial cells. Br J Pharmacol. 1988 Sep;95(1):189–196. doi: 10.1111/j.1476-5381.1988.tb16564.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MacLean M. R., McGrath J. C. Effects of pre-contraction with endothelin-1 on alpha 2-adrenoceptor- and (endothelium-dependent) neuropeptide Y-mediated contractions in the isolated vascular bed of the rat tail. Br J Pharmacol. 1990 Sep;101(1):205–211. doi: 10.1111/j.1476-5381.1990.tb12114.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Matsumoto Y., Ozaki Y., Kariya T., Kume S. Potentiating effects of endothelin on platelet activation induced by epinephrine and ADP. Biochem Pharmacol. 1990 Aug 15;40(4):909–911. doi: 10.1016/0006-2952(90)90337-k. [DOI] [PubMed] [Google Scholar]
  23. Naka M., Nishikawa M., Adelstein R. S., Hidaka H. Phorbol ester-induced activation of human platelets is associated with protein kinase C phosphorylation of myosin light chains. Nature. 1983 Dec 1;306(5942):490–492. doi: 10.1038/306490a0. [DOI] [PubMed] [Google Scholar]
  24. Nakaki T., Roth B. L., Chuang D. M., Costa E. Phasic and tonic components in 5-HT2 receptor-mediated rat aorta contraction: participation of Ca++ channels and phospholipase C. J Pharmacol Exp Ther. 1985 Aug;234(2):442–446. [PubMed] [Google Scholar]
  25. Nakayama K. Active and passive mechanical properties of ring and spiral segments of isolated dog basilar artery assessed by electrical and pharmacological stimulations. Blood Vessels. 1988;25(6):285–298. doi: 10.1159/000158742. [DOI] [PubMed] [Google Scholar]
  26. Nakayama K., Ishii K., Kato H. Effect of Ca-antagonists on the contraction of cerebral and peripheral arteries produced by electrical and mechanical stimuli. Gen Pharmacol. 1983;14(1):111–113. doi: 10.1016/0306-3623(83)90076-9. [DOI] [PubMed] [Google Scholar]
  27. Nakayama K., Kashiwabara T., Yamada S., Tanaka Y. Assessment in pig coronary artery of long-lasting and potent calcium antagonistic actions of the novel dihydropyridine derivative mepirodipine hydrochloride. Arzneimittelforschung. 1989 Jan;39(1):50–55. [PubMed] [Google Scholar]
  28. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  29. Pott J. W., Moreland R. S., Gantzos R. D., Babcock C., Bohr D. F. Vascular interactions of serotonin and norepinephrine in renal hypertensive rabbits. J Hypertens. 1986 Apr;4(2):207–213. doi: 10.1097/00004872-198604000-00011. [DOI] [PubMed] [Google Scholar]
  30. Pöch G., Holzmann S. Quantitative estimation of overadditive and underadditive drug effects by means of theoretical, additive dose-response curves. J Pharmacol Methods. 1980 Sep;4(2):179–188. doi: 10.1016/0160-5402(80)90036-4. [DOI] [PubMed] [Google Scholar]
  31. Sakata K., Ozaki H., Kwon S. C., Karaki H. Effects of endothelin on the mechanical activity and cytosolic calcium level of various types of smooth muscle. Br J Pharmacol. 1989 Oct;98(2):483–492. doi: 10.1111/j.1476-5381.1989.tb12621.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schramm M., Thomas G., Towart R., Franckowiak G. Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels. Nature. 1983 Jun 9;303(5917):535–537. doi: 10.1038/303535a0. [DOI] [PubMed] [Google Scholar]
  33. Shimokawa H., Tomoike H., Nabeyama S., Yamamoto H., Araki H., Nakamura M., Ishii Y., Tanaka K. Coronary artery spasm induced in atherosclerotic miniature swine. Science. 1983 Aug 5;221(4610):560–562. doi: 10.1126/science.6408736. [DOI] [PubMed] [Google Scholar]
  34. Suzuki N., Miyauchi T., Tomobe Y., Matsumoto H., Goto K., Masaki T., Fujino M. Plasma concentrations of endothelin-1 in spontaneously hypertensive rats and DOCA-salt hypertensive rats. Biochem Biophys Res Commun. 1990 Mar 30;167(3):941–947. doi: 10.1016/0006-291x(90)90614-s. [DOI] [PubMed] [Google Scholar]
  35. Van Nueten J. M., Janssen P. A., Van Beek J., Xhonneux R., Verbeuren T. J., Vanhoutte P. M. Vascular effects of ketanserin (R 41 468), a novel antagonist of 5-HT2 serotonergic receptors. J Pharmacol Exp Ther. 1981 Jul;218(1):217–230. [PubMed] [Google Scholar]
  36. Vivaudou M. B., Clapp L. H., Walsh J. V., Jr, Singer J. J. Regulation of one type of Ca2+ current in smooth muscle cells by diacylglycerol and acetylcholine. FASEB J. 1988 Jun;2(9):2497–2504. doi: 10.1096/fasebj.2.9.2453389. [DOI] [PubMed] [Google Scholar]
  37. Watanabe H., Miyazaki H., Kondoh M., Masuda Y., Kimura S., Yanagisawa M., Masaki T., Murakami K. Two distinct types of endothelin receptors are present on chick cardiac membranes. Biochem Biophys Res Commun. 1989 Jun 30;161(3):1252–1259. doi: 10.1016/0006-291x(89)91377-6. [DOI] [PubMed] [Google Scholar]
  38. Yamada S., Kimura R., Harada Y., Nakayama K. Calcium channel receptor sites for (+)-[3H]PN 200-110 in coronary artery. J Pharmacol Exp Ther. 1990 Jan;252(1):327–332. [PubMed] [Google Scholar]
  39. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
  40. Yasue H., Touyama M., Kato H., Tanaka S., Akiyama F. Prinzmetal's variant form of angina as a manifestation of alpha-adrenergic receptor-mediated coronary artery spasm: documentation by coronary arteriography. Am Heart J. 1976 Feb;91(2):148–155. doi: 10.1016/s0002-8703(76)80568-6. [DOI] [PubMed] [Google Scholar]
  41. Zawalich W., Brown C., Rasmussen H. Insulin secretion: combined effects of phorbol ester and A23187. Biochem Biophys Res Commun. 1983 Dec 16;117(2):448–455. doi: 10.1016/0006-291x(83)91221-4. [DOI] [PubMed] [Google Scholar]
  42. de Nucci G., Thomas R., D'Orleans-Juste P., Antunes E., Walder C., Warner T. D., Vane J. R. Pressor effects of circulating endothelin are limited by its removal in the pulmonary circulation and by the release of prostacyclin and endothelium-derived relaxing factor. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9797–9800. doi: 10.1073/pnas.85.24.9797. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES