Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Jul;115(6):1038–1042. doi: 10.1111/j.1476-5381.1995.tb15915.x

Endothelial modulation of vasoconstrictor responses to endothelin-1 in human placental stem villi small arteries.

S Sabry 1, F Mondon 1, M Levy 1, F Ferré 1, A T Dinh-Xuan 1
PMCID: PMC1909017  PMID: 7582500

Abstract

1. The aim of this study was to assess the role of endothelial cells in the modulation of vasocontractile responses to endothelin-1 (ET-1) of human placental vasculature. 2. Isolated stem villi small arteries (diameter = 170-250 microns) were obtained from healthy parturients who underwent caesarean surgery during the 39th week of pregnancy for cephalo-pelvic disproportion. Isometric tension was measured in vascular rings mounted in a myograph system and challenged with ET-1 (10(-12) to 10(-6) M). 3. The vasocontractile response to ET-1 was significantly (P < 0.001) increased in endothelial-denuded (active tension = 1156 +/- 214 mN mm-1) as compared with endothelial-preserved vascular rings (active tension = 458 +/- 48 mN mm-1). This difference was significantly (P < 0.05) but only partly abolished by the NO synthase inhibitor N omega-nitro-L-arginine (L-NOARG, 10(-4) M). 4. In endothelial-preserved rings submaximally precontracted with 5-hydroxytryptamine (10(-6) M), ET-1 (10(-12) to 10(-9) M) induced dose-dependent relaxation (maximum relaxation = 70 +/- 7%) at 10(-9) M, which was followed, at higher doses (10(-8) to 10(-6) M), by a contraction. In contrast, no relaxation was seen in endothelial-denuded rings. The relaxation in rings with endothelium was significantly (P < 0.001) reduced by L-NOARG (10(-4) M. Moreover, it was totally abolished by combined pretreatment with L-NOARG (10(-4) M) and the sulphonylurea glibenclamide (10(-5) M).(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1040

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archer S. L., Huang J. M., Hampl V., Nelson D. P., Shultz P. J., Weir E. K. Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7583–7587. doi: 10.1073/pnas.91.16.7583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bolotina V. M., Najibi S., Palacino J. J., Pagano P. J., Cohen R. A. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature. 1994 Apr 28;368(6474):850–853. doi: 10.1038/368850a0. [DOI] [PubMed] [Google Scholar]
  3. Brayden J. E. Membrane hyperpolarization is a mechanism of endothelium-dependent cerebral vasodilation. Am J Physiol. 1990 Sep;259(3 Pt 2):H668–H673. doi: 10.1152/ajpheart.1990.259.3.H668. [DOI] [PubMed] [Google Scholar]
  4. Clark B. A., Halvorson L., Sachs B., Epstein F. H. Plasma endothelin levels in preeclampsia: elevation and correlation with uric acid levels and renal impairment. Am J Obstet Gynecol. 1992 Mar;166(3):962–968. doi: 10.1016/0002-9378(92)91372-h. [DOI] [PubMed] [Google Scholar]
  5. Ferré F., Mondon F., Mignot T. M., Cronier L., Cavero I., Rostene W., Malassine A. Endothelin-1 binding sites and immunoreactivity in the cultured human placental trophoblast: evidence for an autocrine and paracrine role for endothelin-1. J Cardiovasc Pharmacol. 1993;22 (Suppl 8):S214–S218. doi: 10.1097/00005344-199322008-00058. [DOI] [PubMed] [Google Scholar]
  6. Fox S. B., Khong T. Y. Lack of innervation of human umbilical cord. An immunohistological and histochemical study. Placenta. 1990 Jan-Feb;11(1):59–62. doi: 10.1016/s0143-4004(05)80443-6. [DOI] [PubMed] [Google Scholar]
  7. Greiss F. C., Jr Pressure-flow relationship in the gravid uterine vascular bed. Am J Obstet Gynecol. 1966 Sep 1;96(1):41–47. doi: 10.1016/s0002-9378(16)34639-7. [DOI] [PubMed] [Google Scholar]
  8. Gude N. M., King R. G., Brennecke S. P. Endothelin: release by and potent constrictor effect on the fetal vessels of human perfused placental lobules. Reprod Fertil Dev. 1991;3(4):495–500. doi: 10.1071/rd9910495. [DOI] [PubMed] [Google Scholar]
  9. Hasunuma K., Rodman D. M., O'Brien R. F., McMurtry I. F. Endothelin 1 causes pulmonary vasodilation in rats. Am J Physiol. 1990 Jul;259(1 Pt 2):H48–H54. doi: 10.1152/ajpheart.1990.259.1.H48. [DOI] [PubMed] [Google Scholar]
  10. Inoue A., Yanagisawa M., Kimura S., Kasuya Y., Miyauchi T., Goto K., Masaki T. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2863–2867. doi: 10.1073/pnas.86.8.2863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ishii K., Chang B., Kerwin J. F., Jr, Huang Z. J., Murad F. N omega-nitro-L-arginine: a potent inhibitor of endothelium-derived relaxing factor formation. Eur J Pharmacol. 1990 Feb 6;176(2):219–223. doi: 10.1016/0014-2999(90)90531-a. [DOI] [PubMed] [Google Scholar]
  12. Kaufmann P. Development and differentiation of the human placental villous tree. Bibl Anat. 1982;(22):29–39. [PubMed] [Google Scholar]
  13. Komuro I., Kurihara H., Sugiyama T., Yoshizumi M., Takaku F., Yazaki Y. Endothelin stimulates c-fos and c-myc expression and proliferation of vascular smooth muscle cells. FEBS Lett. 1988 Oct 10;238(2):249–252. doi: 10.1016/0014-5793(88)80489-7. [DOI] [PubMed] [Google Scholar]
  14. Lerman A., Edwards B. S., Hallett J. W., Heublein D. M., Sandberg S. M., Burnett J. C., Jr Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. N Engl J Med. 1991 Oct 3;325(14):997–1001. doi: 10.1056/NEJM199110033251404. [DOI] [PubMed] [Google Scholar]
  15. Lippton H. L., Cohen G. A., McMurtry I. F., Hyman A. L. Pulmonary vasodilation to endothelin isopeptides in vivo is mediated by potassium channel activation. J Appl Physiol (1985) 1991 Feb;70(2):947–952. doi: 10.1152/jappl.1991.70.2.947. [DOI] [PubMed] [Google Scholar]
  16. Lippton H. L., Hauth T. A., Summer W. R., Hyman A. L. Endothelin produces pulmonary vasoconstriction and systemic vasodilation. J Appl Physiol (1985) 1989 Feb;66(2):1008–1012. doi: 10.1152/jappl.1989.66.2.1008. [DOI] [PubMed] [Google Scholar]
  17. MacLean M. R., Templeton A. G., McGrath J. C. The influence of endothelin-1 on human foeto-placental blood vessels: a comparison with 5-hydroxytryptamine. Br J Pharmacol. 1992 Aug;106(4):937–941. doi: 10.1111/j.1476-5381.1992.tb14438.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Maggi C. A., Giuliani S., Patacchini R., Rovero P., Giachetti A., Meli A. The activity of peptides of the endothelin family in various mammalian smooth muscle preparations. Eur J Pharmacol. 1989 Dec 12;174(1):23–31. doi: 10.1016/0014-2999(89)90869-8. [DOI] [PubMed] [Google Scholar]
  19. Mastrogiannis D. S., O'Brien W. F., Krammer J., Benoit R. Potential role of endothelin-1 in normal and hypertensive pregnancies. Am J Obstet Gynecol. 1991 Dec;165(6 Pt 1):1711–1716. doi: 10.1016/0002-9378(91)90020-r. [DOI] [PubMed] [Google Scholar]
  20. McQeen J., Kingdom J. C., Connell J. M., Whittle M. J. Fetal endothelin levels and placental vascular endothelin receptors in intrauterine growth retardation. Obstet Gynecol. 1993 Dec;82(6):992–998. [PubMed] [Google Scholar]
  21. Mondon F., Malassine A., Robaut C., Vial M., Bandet J., Tanguy G., Rostene W., Cavero I., Ferre F. Biochemical characterization and autoradiographic localization of [125I]endothelin-1 binding sites on trophoblast and blood vessels of human placenta. J Clin Endocrinol Metab. 1993 Jan;76(1):237–244. doi: 10.1210/jcem.76.1.8421091. [DOI] [PubMed] [Google Scholar]
  22. Moore P. K., al-Swayeh O. A., Chong N. W., Evans R. A., Gibson A. L-NG-nitro arginine (L-NOARG), a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Br J Pharmacol. 1990 Feb;99(2):408–412. doi: 10.1111/j.1476-5381.1990.tb14717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mulvany M. J., Aalkjaer C. Structure and function of small arteries. Physiol Rev. 1990 Oct;70(4):921–961. doi: 10.1152/physrev.1990.70.4.921. [DOI] [PubMed] [Google Scholar]
  24. Mulvany M. J., Halpern W. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res. 1977 Jul;41(1):19–26. doi: 10.1161/01.res.41.1.19. [DOI] [PubMed] [Google Scholar]
  25. Myatt L., Brewer A. S., Brockman D. E. The comparative effects of big endothelin-1, endothelin-1, and endothelin-3 in the human fetal-placental circulation. Am J Obstet Gynecol. 1992 Dec;167(6):1651–1656. doi: 10.1016/0002-9378(92)91756-z. [DOI] [PubMed] [Google Scholar]
  26. Nakashima M., Vanhoutte P. M. Endothelin-1 and -3 cause endothelium-dependent hyperpolarization in the rat mesenteric artery. Am J Physiol. 1993 Dec;265(6 Pt 2):H2137–H2141. doi: 10.1152/ajpheart.1993.265.6.H2137. [DOI] [PubMed] [Google Scholar]
  27. Nova A., Sibai B. M., Barton J. R., Mercer B. M., Mitchell M. D. Maternal plasma level of endothelin is increased in preeclampsia. Am J Obstet Gynecol. 1991 Sep;165(3):724–727. doi: 10.1016/0002-9378(91)90317-k. [DOI] [PubMed] [Google Scholar]
  28. Osol G., Cipolla M., Knutson S. A new method for mechanically denuding the endothelium of small (50-150 microns) arteries with a human hair. Blood Vessels. 1989;26(5):320–324. doi: 10.1159/000158781. [DOI] [PubMed] [Google Scholar]
  29. Peeters L. L., Grutters G., Martin C. B., Jr Distribution of cardiac output in the unstressed pregnant guinea pig. Am J Obstet Gynecol. 1980 Dec 15;138(8):1177–1184. doi: 10.1016/s0002-9378(16)32788-0. [DOI] [PubMed] [Google Scholar]
  30. Quast U., Cook N. S. Moving together: K+ channel openers and ATP-sensitive K+ channels. Trends Pharmacol Sci. 1989 Nov;10(11):431–435. doi: 10.1016/S0165-6147(89)80003-3. [DOI] [PubMed] [Google Scholar]
  31. Robaut C., Mondon F., Bandet J., Ferre F., Cavero I. Regional distribution and pharmacological characterization of [125I]endothelin-1 binding sites in human fetal placental vessels. Placenta. 1991 Jan-Feb;12(1):55–67. doi: 10.1016/0143-4004(91)90510-m. [DOI] [PubMed] [Google Scholar]
  32. Sabry S., Mondon F., Ferré F., Dinh-Xuan A. T. In vitro contractile and relaxant responses of human resistance placental stem villi arteries of healthy parturients: role of endothelium. Fundam Clin Pharmacol. 1995;9(1):46–51. doi: 10.1111/j.1472-8206.1995.tb00264.x. [DOI] [PubMed] [Google Scholar]
  33. Sakata K., Ozaki H., Kwon S. C., Karaki H. Effects of endothelin on the mechanical activity and cytosolic calcium level of various types of smooth muscle. Br J Pharmacol. 1989 Oct;98(2):483–492. doi: 10.1111/j.1476-5381.1989.tb12621.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Simonson M. S., Wann S., Mené P., Dubyak G. R., Kester M., Nakazato Y., Sedor J. R., Dunn M. J. Endothelin stimulates phospholipase C, Na+/H+ exchange, c-fos expression, and mitogenesis in rat mesangial cells. J Clin Invest. 1989 Feb;83(2):708–712. doi: 10.1172/JCI113935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Standen N. B., Quayle J. M., Davies N. W., Brayden J. E., Huang Y., Nelson M. T. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science. 1989 Jul 14;245(4914):177–180. doi: 10.1126/science.2501869. [DOI] [PubMed] [Google Scholar]
  36. Tare M., Parkington H. C., Coleman H. A., Neild T. O., Dusting G. J. Hyperpolarization and relaxation of arterial smooth muscle caused by nitric oxide derived from the endothelium. Nature. 1990 Jul 5;346(6279):69–71. doi: 10.1038/346069a0. [DOI] [PubMed] [Google Scholar]
  37. Taylor S. G., Weston A. H. Endothelium-derived hyperpolarizing factor: a new endogenous inhibitor from the vascular endothelium. Trends Pharmacol Sci. 1988 Aug;9(8):272–274. doi: 10.1016/0165-6147(88)90003-x. [DOI] [PubMed] [Google Scholar]
  38. Tod M. L., Cassin S. Endothelin-1-induced pulmonary arterial dilation is reduced by N omega-nitro-L-arginine in fetal lambs. J Appl Physiol (1985) 1992 May;72(5):1730–1734. doi: 10.1152/jappl.1992.72.5.1730. [DOI] [PubMed] [Google Scholar]
  39. Van Renterghem C., Vigne P., Barhanin J., Schmid-Alliana A., Frelin C., Lazdunski M. Molecular mechanism of action of the vasoconstrictor peptide endothelin. Biochem Biophys Res Commun. 1988 Dec 30;157(3):977–985. doi: 10.1016/s0006-291x(88)80970-7. [DOI] [PubMed] [Google Scholar]
  40. Warner T. D., de Nucci G., Vane J. R. Rat endothelin is a vasodilator in the isolated perfused mesentery of the rat. Eur J Pharmacol. 1989 Jan 17;159(3):325–326. doi: 10.1016/0014-2999(89)90167-2. [DOI] [PubMed] [Google Scholar]
  41. Wilkes B. M., Mento P. F., Hollander A. M., Maita M. E., Sung S., Girardi E. P. Endothelin receptors in human placenta: relationship to vascular resistance and thromboxane release. Am J Physiol. 1990 May;258(5 Pt 1):E864–E870. doi: 10.1152/ajpendo.1990.258.5.E864. [DOI] [PubMed] [Google Scholar]
  42. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
  43. Yanagisawa M., Masaki T. Endothelin, a novel endothelium-derived peptide. Pharmacological activities, regulation and possible roles in cardiovascular control. Biochem Pharmacol. 1989 Jun 15;38(12):1877–1883. doi: 10.1016/0006-2952(89)90484-x. [DOI] [PubMed] [Google Scholar]
  44. de Nucci G., Thomas R., D'Orleans-Juste P., Antunes E., Walder C., Warner T. D., Vane J. R. Pressor effects of circulating endothelin are limited by its removal in the pulmonary circulation and by the release of prostacyclin and endothelium-derived relaxing factor. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9797–9800. doi: 10.1073/pnas.85.24.9797. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES