Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Sep;116(2):1757–1760. doi: 10.1111/j.1476-5381.1995.tb16659.x

The in vivo effect of lipopolysaccharide on the spontaneous release of transmitter from motor nerve terminals.

S H Liu 1, T J Sheu 1, R H Lin 1, S Y Lin-Shiau 1
PMCID: PMC1909088  PMID: 8528556

Abstract

1. The in vivo effect of E. coli lipopolysaccharide (LPS) on the spontaneous release of transmitter was studied in the isolated phrenic nerve-diaphragm preparation of the mouse. 2. The resting membrane potential was decreased and frequency of miniature endplate potentials (m.e.p.ps) was increased by treatment with LPS. 3. Pretreatment of diaphragms with ouabain markedly increased the frequency of m.e.p.ps in control group but not in the LPS group. 4. When mice were treated with polymyxin B (a LPS neutralizer), pentoxifylline (an inhibitor of tumor necrosis factor-alpha formation) and NG-nitro-L-arginine (an inhibitor of nitric oxide (NO) synthase) the effects of LPS were reversed. 5. These results suggest that LPS increases the spontaneous transmitter release through, at least in part, the pathways of tumour necrosis factor-alpha and NO followed by an inhibition of the Na(+)-pump activity in the endplate area.

Full text

PDF
1759

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aoki E., Semba R., Mikoshiba K., Kashiwamata S. Predominant localization in glial cells of free L-arginine. Immunocytochemical evidence. Brain Res. 1991 May 3;547(2):190–192. doi: 10.1016/0006-8993(91)90961-t. [DOI] [PubMed] [Google Scholar]
  2. Baker P. F., Crawford A. C. A note of the mechanism by which inhibitors of the sodium pump accelerate spontaneous release of transmitter from motor nerve terminals. J Physiol. 1975 May;247(1):209–226. doi: 10.1113/jphysiol.1975.sp010928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beutler B., Cerami A. Tumor necrosis, cachexia, shock, and inflammation: a common mediator. Annu Rev Biochem. 1988;57:505–518. doi: 10.1146/annurev.bi.57.070188.002445. [DOI] [PubMed] [Google Scholar]
  4. Bocci V. Central nervous system toxicity of interferons and other cytokines. J Biol Regul Homeost Agents. 1988 Jul-Sep;2(3):107–118. [PubMed] [Google Scholar]
  5. Bredt D. S., Hwang P. M., Snyder S. H. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature. 1990 Oct 25;347(6295):768–770. doi: 10.1038/347768a0. [DOI] [PubMed] [Google Scholar]
  6. Bult H., Boeckxstaens G. E., Pelckmans P. A., Jordaens F. H., Van Maercke Y. M., Herman A. G. Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature. 1990 May 24;345(6273):346–347. doi: 10.1038/345346a0. [DOI] [PubMed] [Google Scholar]
  7. Calvet M. C., Gresser I. Interferon enhances the excitability of cultured neurones. Nature. 1979 Apr 5;278(5704):558–560. doi: 10.1038/278558a0. [DOI] [PubMed] [Google Scholar]
  8. Caratsch C. G., Santoni A., Eusebi F. Interferon-alpha, beta and tumor necrosis factor-alpha enhance the frequency of miniature end-plate potentials at rat neuromuscular junction. Neurosci Lett. 1994 Jan 17;166(1):97–100. doi: 10.1016/0304-3940(94)90849-4. [DOI] [PubMed] [Google Scholar]
  9. Chao C. C., Hu S., Molitor T. W., Shaskan E. G., Peterson P. K. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol. 1992 Oct 15;149(8):2736–2741. [PubMed] [Google Scholar]
  10. Craig W. A., Turner J. H., Kunin C. M. Prevention of the generalized Shwartzman reaction and endotoxin lethality by polymyxin B localized in tissues. Infect Immun. 1974 Aug;10(2):287–292. doi: 10.1128/iai.10.2.287-292.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. D'Arcangelo G., Grassi F., Ragozzino D., Santoni A., Tancredi V., Eusebi F. Interferon inhibits synaptic potentiation in rat hippocampus. Brain Res. 1991 Nov 15;564(2):245–248. doi: 10.1016/0006-8993(91)91459-e. [DOI] [PubMed] [Google Scholar]
  12. FATT P., KATZ B. An analysis of the end-plate potential recorded with an intracellular electrode. J Physiol. 1951 Nov 28;115(3):320–370. doi: 10.1113/jphysiol.1951.sp004675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hernández-R J. Na+/K(+)-ATPase regulation by neurotransmitters. Neurochem Int. 1992 Jan;20(1):1–10. doi: 10.1016/0197-0186(92)90119-c. [DOI] [PubMed] [Google Scholar]
  14. Hibbs J. B., Jr, Taintor R. R., Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science. 1987 Jan 23;235(4787):473–476. doi: 10.1126/science.2432665. [DOI] [PubMed] [Google Scholar]
  15. Lynn W. A., Golenbock D. T. Lipopolysaccharide antagonists. Immunol Today. 1992 Jul;13(7):271–276. doi: 10.1016/0167-5699(92)90009-V. [DOI] [PubMed] [Google Scholar]
  16. Morrison D. C., Jacobs D. M. Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry. 1976 Oct;13(10):813–818. doi: 10.1016/0019-2791(76)90181-6. [DOI] [PubMed] [Google Scholar]
  17. Murphy S., Simmons M. L., Agullo L., Garcia A., Feinstein D. L., Galea E., Reis D. J., Minc-Golomb D., Schwartz J. P. Synthesis of nitric oxide in CNS glial cells. Trends Neurosci. 1993 Aug;16(8):323–328. doi: 10.1016/0166-2236(93)90109-y. [DOI] [PubMed] [Google Scholar]
  18. Muñoz-Fernández M. A., Cano E., O'Donnell C. A., Doyle J., Liew F. Y., Fresno M. Tumor necrosis factor-alpha (TNF-alpha), interferon-gamma, and interleukin-6 but not TNF-beta induce differentiation of neuroblastoma cells: the role of nitric oxide. J Neurochem. 1994 Apr;62(4):1330–1336. doi: 10.1046/j.1471-4159.1994.62041330.x. [DOI] [PubMed] [Google Scholar]
  19. Nathan C. F. Secretory products of macrophages. J Clin Invest. 1987 Feb;79(2):319–326. doi: 10.1172/JCI112815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pruzanski W., Vadas P. Phospholipase A2--a mediator between proximal and distal effectors of inflammation. Immunol Today. 1991 May;12(5):143–146. doi: 10.1016/S0167-5699(05)80042-8. [DOI] [PubMed] [Google Scholar]
  21. Strieter R. M., Remick D. G., Ward P. A., Spengler R. N., Lynch J. P., 3rd, Larrick J., Kunkel S. L. Cellular and molecular regulation of tumor necrosis factor-alpha production by pentoxifylline. Biochem Biophys Res Commun. 1988 Sep 30;155(3):1230–1236. doi: 10.1016/s0006-291x(88)81271-3. [DOI] [PubMed] [Google Scholar]
  22. Stuehr D. J., Nathan C. F. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med. 1989 May 1;169(5):1543–1555. doi: 10.1084/jem.169.5.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vizi E. S., Oberfrank F. Na+/K(+)-ATPase, its endogenous ligands and neurotransmitter release. Neurochem Int. 1992 Jan;20(1):11–17. doi: 10.1016/0197-0186(92)90120-g. [DOI] [PubMed] [Google Scholar]
  24. Vizi E. S. Stimulation, by inhibition of (Na + -K + -Mg 2+ )-activated ATP-ase, of acetylcholine release in cortical slices from rat brain. J Physiol. 1972 Oct;226(1):95–117. doi: 10.1113/jphysiol.1972.sp009975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zabel P., Schade F. U., Schlaak M. Inhibition of endogenous TNF formation by pentoxifylline. Immunobiology. 1993 Apr;187(3-5):447–463. doi: 10.1016/S0171-2985(11)80356-6. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES