Abstract
1. The effects of pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP) and secretin on pancreatic endocrine secretions and vascular resistance were investigated and compared in the isolated perfused pancreas of the rat. The PACAP/VIP receptor types involved have been characterized. 2. On insulin secretion, in the range 10(-11) to 10(-8) M, PACAP and VIP elicited a concentration-dependent biphasic response from pancreas perfused with 8.3 mM glucose; the peptides were equipotent. In contrast, secretin was ineffective in the range 10(-11) to 10(-9) M; at 10(-8) and 10(-7) M, it induced only low and transient insulin responses. On the other hand, the peptides did not modify the basal insulin release in the presence of a non stimulating glucose concentration (2.8 mM). 3. On glucagon secretion, PACAP and VIP (10(-11) to 10(-8) M) but also secretin (10(-9) to 10(-7) M) caused a concentration-dependent peak shaped response from pancreas perfused with 2.8 mM glucose; PACAP and VIP were equipotent and 20 times more potent then secretin. On the other hand, the peptides did not affect the glucagon release in the presence of 8.3 mM glucose. 4. On pancreatic vessels, in the range 10(-11) to 10(-9) M, the three peptides were equipotent in inducing a concentration-dependent sustained increase in pancreatic flow rate. On the other hand, at the high concentration of 10(-7) M PACAP but not VIP provoked a transient decrease of flow rate. 5. This study provides evidence for PACAP/VIP type II receptors mediating insulin and glucagon secretion as well as vasodilatation in rat pancreas. In addition, the different efficacies of secretin suggest that these effects are mediated by different PACAP/VIP type II receptor subtypes.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Absood A., Chen D., Wang Z. Y., Håkanson R. Vascular effects of pituitary adenylate cyclase activating peptide: a comparison with vasoactive intestinal peptide. Regul Pept. 1992 Aug 13;40(3):323–329. doi: 10.1016/0167-0115(92)90519-z. [DOI] [PubMed] [Google Scholar]
- Arimura A. Pituitary adenylate cyclase activating polypeptide (PACAP): discovery and current status of research. Regul Pept. 1992 Feb 18;37(3):287–303. [PubMed] [Google Scholar]
- Arimura A., Shioda S. Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors: neuroendocrine and endocrine interaction. Front Neuroendocrinol. 1995 Jan;16(1):53–88. doi: 10.1006/frne.1995.1003. [DOI] [PubMed] [Google Scholar]
- Bertrand G., Chapal J., Loubatieres-Mariani M. M. Potentiating synergism between adenosine diphosphate or triphosphate and acetylcholine on insulin secretion. Am J Physiol. 1986 Oct;251(4 Pt 1):E416–E421. doi: 10.1152/ajpendo.1986.251.4.E416. [DOI] [PubMed] [Google Scholar]
- Bishop A. E., Polak J. M., Green I. C., Bryant M. G., Bloom S. R. The location of VIP in the pancreas of man and rat. Diabetologia. 1980 Jan;18(1):73–78. doi: 10.1007/BF01228307. [DOI] [PubMed] [Google Scholar]
- Christophe J. Type I receptors for PACAP (a neuropeptide even more important than VIP?). Biochim Biophys Acta. 1993 Oct 29;1154(2):183–199. doi: 10.1016/0304-4157(93)90011-c. [DOI] [PubMed] [Google Scholar]
- Fridolf T., Sundler F., Ahrén B. Pituitary adenylate cyclase-activating polypeptide (PACAP): occurrence in rodent pancreas and effects on insulin and glucagon secretion in the mouse. Cell Tissue Res. 1992 Aug;269(2):275–279. doi: 10.1007/BF00319618. [DOI] [PubMed] [Google Scholar]
- Harmar T., Lutz E. Multiple receptors for PACAP and VIP. Trends Pharmacol Sci. 1994 Apr;15(4):97–99. doi: 10.1016/0165-6147(94)90042-6. [DOI] [PubMed] [Google Scholar]
- Herbert V., Lau K. S., Gottlieb C. W., Bleicher S. J. Coated charcoal immunoassay of insulin. J Clin Endocrinol Metab. 1965 Oct;25(10):1375–1384. doi: 10.1210/jcem-25-10-1375. [DOI] [PubMed] [Google Scholar]
- Huang M., Shirahase H., Rorstad O. P. Comparative study of vascular relaxation and receptor binding by PACAP and VIP. Peptides. 1993 Jul-Aug;14(4):755–762. doi: 10.1016/0196-9781(93)90109-t. [DOI] [PubMed] [Google Scholar]
- Inagaki N., Yoshida H., Mizuta M., Mizuno N., Fujii Y., Gonoi T., Miyazaki J., Seino S. Cloning and functional characterization of a third pituitary adenylate cyclase-activating polypeptide receptor subtype expressed in insulin-secreting cells. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2679–2683. doi: 10.1073/pnas.91.7.2679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishihara T., Shigemoto R., Mori K., Takahashi K., Nagata S. Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron. 1992 Apr;8(4):811–819. doi: 10.1016/0896-6273(92)90101-i. [DOI] [PubMed] [Google Scholar]
- Jansson L. Vasoactive intestinal polypeptide increases whole pancreatic blood flow but does not affect islet blood flow in the rat. Acta Diabetol. 1994 Jun;31(2):103–106. doi: 10.1007/BF00570545. [DOI] [PubMed] [Google Scholar]
- Kawai K., Ohse C., Watanabe Y., Suzuki S., Yamashita K., Ohashi S. Pituitary adenylate cyclase activating polypeptide stimulates insulin release from the isolated perfused rat pancreas. Life Sci. 1992;50(4):257–261. doi: 10.1016/0024-3205(92)90332-j. [DOI] [PubMed] [Google Scholar]
- Köves K., Arimura A., Vigh S., Somogyvári-Vigh A., Miller J. Immunohistochemical localization of PACAP in the ovine digestive system. Peptides. 1993 May-Jun;14(3):449–455. doi: 10.1016/0196-9781(93)90131-y. [DOI] [PubMed] [Google Scholar]
- Loubatières A., Mariani M. M., Ribes G., de Malbosc H., Chapal J. Etude expérimentale d'un nouveau sulfamide hypoglycémiant particulièrement actif, le HB 419 ou glibenclamide. Diabetologia. 1969 Feb;5(1):1–10. doi: 10.1007/BF01212212. [DOI] [PubMed] [Google Scholar]
- Lutz E. M., Sheward W. J., West K. M., Morrow J. A., Fink G., Harmar A. J. The VIP2 receptor: molecular characterisation of a cDNA encoding a novel receptor for vasoactive intestinal peptide. FEBS Lett. 1993 Nov 8;334(1):3–8. doi: 10.1016/0014-5793(93)81668-p. [DOI] [PubMed] [Google Scholar]
- Miyata A., Arimura A., Dahl R. R., Minamino N., Uehara A., Jiang L., Culler M. D., Coy D. H. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun. 1989 Oct 16;164(1):567–574. doi: 10.1016/0006-291x(89)91757-9. [DOI] [PubMed] [Google Scholar]
- Miyata A., Jiang L., Dahl R. D., Kitada C., Kubo K., Fujino M., Minamino N., Arimura A. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun. 1990 Jul 31;170(2):643–648. doi: 10.1016/0006-291x(90)92140-u. [DOI] [PubMed] [Google Scholar]
- Nandha K. A., Benito-Orfila M. A., Smith D. M., Ghatei M. A., Bloom S. R. Action of pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal polypeptide on the rat vascular system: effects on blood pressure and receptor binding. J Endocrinol. 1991 Apr;129(1):69–73. doi: 10.1677/joe.0.1290069. [DOI] [PubMed] [Google Scholar]
- Rawlings S. R. PACAP, PACAP receptors, and intracellular signalling. Mol Cell Endocrinol. 1994 May;101(1-2):C5–C9. doi: 10.1016/0303-7207(94)90212-7. [DOI] [PubMed] [Google Scholar]
- Santiago J. A., Kadowitz P. J. Analysis of responses to pituitary adenylate cyclase activating polypeptide-38 in the feline hindquarters vascular bed. Eur J Pharmacol. 1993 Oct 26;243(3):291–294. doi: 10.1016/0014-2999(93)90188-n. [DOI] [PubMed] [Google Scholar]
- Schebalin M., Said S. I., Makhlouf G. M. Stimulation of insulin and glucagon secretion by vasoactive intestinal peptide. Am J Physiol. 1977 Feb;232(2):E197–E200. doi: 10.1152/ajpendo.1977.232.2.E197. [DOI] [PubMed] [Google Scholar]
- Szecówka J., Sandberg E., Efendić S. The interaction of vasoactive intestinal polypeptide (VIP), glucose and arginine on the secretion of insulin, glucagon and somatostatin in the perfused rat pancreas. Diabetologia. 1980 Aug;19(2):137–142. doi: 10.1007/BF00421860. [DOI] [PubMed] [Google Scholar]
- Unger R. H., Aguilar-Parada E., Müller W. A., Eisentraut A. M. Studies of pancreatic alpha cell function in normal and diabetic subjects. J Clin Invest. 1970 Apr;49(4):837–848. doi: 10.1172/JCI106297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Usdin T. B., Bonner T. I., Mezey E. Two receptors for vasoactive intestinal polypeptide with similar specificity and complementary distributions. Endocrinology. 1994 Dec;135(6):2662–2680. doi: 10.1210/endo.135.6.7988457. [DOI] [PubMed] [Google Scholar]
- Warren J. B., Donnelly L. E., Cullen S., Robertson B. E., Ghatei M. A., Bloom S. R., MacDermot J. Pituitary adenylate cyclase-activating polypeptide: a novel, long-lasting, endothelium-independent vasorelaxant. Eur J Pharmacol. 1991 May 17;197(2-3):131–134. doi: 10.1016/0014-2999(91)90511-n. [DOI] [PubMed] [Google Scholar]
- Yada T., Sakurada M., Ihida K., Nakata M., Murata F., Arimura A., Kikuchi M. Pituitary adenylate cyclase activating polypeptide is an extraordinarily potent intra-pancreatic regulator of insulin secretion from islet beta-cells. J Biol Chem. 1994 Jan 14;269(2):1290–1293. [PubMed] [Google Scholar]
- Yokota C., Kawai K., Ohashi S., Watanabe Y., Suzuki S., Yamashita K. Stimulatory effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on insulin and glucagon release from the isolated perfused rat pancreas. Acta Endocrinol (Copenh) 1993 Nov;129(5):473–479. doi: 10.1530/acta.0.1290473. [DOI] [PubMed] [Google Scholar]