Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 May;118(1):137–140. doi: 10.1111/j.1476-5381.1996.tb15376.x

Inhibition of nitrergic relaxations by a selective inhibitor of the soluble guanylate cyclase.

S Cellek 1, L Kasakov 1, S Moncada 1
PMCID: PMC1909488  PMID: 8733586

Abstract

1. The actions of 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ), a specific inhibitor of the soluble guanylate cyclase (SGC), were investigated in the rabbit anococcygeus muscle. 2. ODQ (1 nM-1 microM) inhibited in a concentration-dependent manner the relaxations induced by electrical field stimulation (EFS; 50 V, 0.3 ms duration, 1 Hz, for 5 s, every 120 s). 3. ODQ (1 microM) also inhibited the relaxations elicited by EFS (50 V, 0.3 ms duration, 1, 2.5, 5, 10 Hz, for 5 s) and sodium nitroprusside (SNP; 1 microM) without affecting those induced by isoprenaline (1 microM), atrial natriuretic peptide (ANP; 100 nM) or an analogue of cyclic GMP (8-pCPT-cyclic GMP; 500 microM). 4. ODQ (1 microM) inhibited the elevations in the concentration of cyclic GMP induced by SNP or EFS, but not by ANP. ODQ did not affect the concentrations of cyclic AMP. 5. Nitrergic relaxation in this tissue appears, therefore, to be mediated via activation of SGC.

Full text

PDF
140

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowman A., Drummond A. H. Cyclic GMP mediates neurogenic relaxation in the bovine retractor penis muscle. Br J Pharmacol. 1984 Apr;81(4):665–674. doi: 10.1111/j.1476-5381.1984.tb16133.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brookes S. J. Neuronal nitric oxide in the gut. J Gastroenterol Hepatol. 1993 Nov-Dec;8(6):590–603. doi: 10.1111/j.1440-1746.1993.tb01658.x. [DOI] [PubMed] [Google Scholar]
  3. Garthwaite J., Southam E., Boulton C. L., Nielsen E. B., Schmidt K., Mayer B. Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Mol Pharmacol. 1995 Aug;48(2):184–188. [PubMed] [Google Scholar]
  4. Graham A. M., Sneddon P. Evidence for nitric oxide as an inhibitory neurotransmitter in rabbit isolated anococcygeus. Eur J Pharmacol. 1993 Jun 11;237(1):93–99. doi: 10.1016/0014-2999(93)90097-2. [DOI] [PubMed] [Google Scholar]
  5. Kasakov L., Cellek S., Moncada S. Characterization of nitrergic neurotransmission during short- and long-term electrical stimulation of the rabbit anococcygeus muscle. Br J Pharmacol. 1995 Aug;115(7):1149–1154. doi: 10.1111/j.1476-5381.1995.tb15017.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Mayer B., Brunner F., Schmidt K. Inhibition of nitric oxide synthesis by methylene blue. Biochem Pharmacol. 1993 Jan 26;45(2):367–374. doi: 10.1016/0006-2952(93)90072-5. [DOI] [PubMed] [Google Scholar]
  7. Mirzazadeh S., Hobbs A. J., Tucker J. F., Gibson A. Cyclic nucleotide content of the rat anococcygeus during relaxations induced by drugs or by non-adrenergic, non-cholinergic field stimulation. J Pharm Pharmacol. 1991 Apr;43(4):247–251. doi: 10.1111/j.2042-7158.1991.tb06677.x. [DOI] [PubMed] [Google Scholar]
  8. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  9. Moro M. A., Russel R. J., Cellek S., Lizasoain I., Su Y., Darley-Usmar V. M., Radomski M. W., Moncada S. cGMP mediates the vascular and platelet actions of nitric oxide: confirmation using an inhibitor of the soluble guanylyl cyclase. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1480–1485. doi: 10.1073/pnas.93.4.1480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mülsch A., Busse R., Liebau S., Förstermann U. LY 83583 interferes with the release of endothelium-derived relaxing factor and inhibits soluble guanylate cyclase. J Pharmacol Exp Ther. 1988 Oct;247(1):283–288. [PubMed] [Google Scholar]
  11. Rand M. J., Li C. G. Nitric oxide as a neurotransmitter in peripheral nerves: nature of transmitter and mechanism of transmission. Annu Rev Physiol. 1995;57:659–682. doi: 10.1146/annurev.ph.57.030195.003303. [DOI] [PubMed] [Google Scholar]
  12. Rand M. J. Nitrergic transmission: nitric oxide as a mediator of non-adrenergic, non-cholinergic neuro-effector transmission. Clin Exp Pharmacol Physiol. 1992 Mar;19(3):147–169. doi: 10.1111/j.1440-1681.1992.tb00433.x. [DOI] [PubMed] [Google Scholar]
  13. Rees D. D., Palmer R. M., Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A. 1989 May;86(9):3375–3378. doi: 10.1073/pnas.86.9.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ward S. M., McKeen E. S., Sanders K. M. Role of nitric oxide in non-adrenergic, non-cholinergic inhibitory junction potentials in canine ileocolonic sphincter. Br J Pharmacol. 1992 Apr;105(4):776–782. doi: 10.1111/j.1476-5381.1992.tb09056.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wiklund N. P., Leone A. M., Gustafsson L. E., Moncada S. Release of nitric oxide evoked by nerve stimulation in guinea-pig intestine. Neuroscience. 1993 Apr;53(3):607–611. doi: 10.1016/0306-4522(93)90609-j. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES