Abstract
1. The effects of metabotropic glutamate receptor (mGluR) agonists on cyclic nucleotide and phosphoinositide turnover were investigated in adult guinea-pig cerebellar slices by use of radioactive precursors. 2.L-Glutamate, 1-aminocyclopentane-1S,3R-dicarboxylate (1S,3R-ACPD) and RS-3,5-dihydroxyphenylglycine (DHPG) evoked concentration-dependent increases in the accumulation of [3H]-inositol phosphates with pEC50 values of 2.98 +/- 0.02, 4.45 +/- 0.06 and 4.47 +/- 0.07, respectively. Maximal responses to these agents were 43 +/- 8, 52 +/- 12 and 84 +/- 11% of the response to 1 mM histamine, respectively. 3. The phosphoinositide response to 1S,3R-ACPD was antagonized in the presence of (+)-alpha-methyl-4-carboxyphenylglycine, with a calculated pKi value of 3.55 +/- 0.03. 4. Forskolin-stimulated accumulation of [3H]-cyclic AMP was not significantly altered in the presence of 10 microM DCG-IV or 300 microM 1S,3R-ACPD. Similarly, 300 microM 1S,3R-ACPD failed to alter isoprenaline-(1 microM) or 2-chloroadenosine (2-CA, 30 microM)-stimulated accumulation of [3H]-cyclic AMP. 5. Forskolin-stimulated accumulation of [3H]-cyclic AMP was concentration-dependently inhibited in the presence of L-glutamate and L-serine-O-phosphate (L-SOP) with pIC50 values of 2.91 +/- 0.17 and 2.86 +/- 0.04 with maximal inhibitions of 47 +/- 2 and 92 +/- 3%, respectively. L-2-Amino-4-phosphonobuty-rate (L-AP4) inhibited the forskolin response without saturating, evoking an inhibition of 71 +/- 7% at 3 mM. 6. 2-CA-evoked accumulation of [3H]-cyclic AMP was also inhibited by L-glutamate and L-SOP with pIC50 values of 2.71 +/- 0.03 and 2.72 +/- 0.08 and maximal inhibitions of 51 +/- 5 and 99 +/- 0%, respectively. L-AP4 inhibited the 2-CA response without saturating, evoking an inhibition of 68 +/- 1% at 3 mM. 7. Isoprenaline-evoked accumulation of [3H]-cyclic AMP was inhibited by L-glutamate and L-SOP with pIC50 values of 3.21 +/- 0.01 and 2.96 +/- 0.08 and maximal inhibitions of 88 +/- 2 and 93 +/- 3%, respectively. 8. These results suggest that the guinea-pig cerebellum expresses Group I and Group III mGluRs coupled to phosphoinositide turnover and inhibition of cyclic AMP generation, respectively.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abe T., Sugihara H., Nawa H., Shigemoto R., Mizuno N., Nakanishi S. Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem. 1992 Jul 5;267(19):13361–13368. [PubMed] [Google Scholar]
 - Alexander S. P., Curtis A. R., Kendall D. A., Hill S. J. A1 adenosine receptor inhibition of cyclic AMP formation and radioligand binding in the guinea-pig cerebral cortex. Br J Pharmacol. 1994 Dec;113(4):1501–1507. doi: 10.1111/j.1476-5381.1994.tb17166.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Alexander S. P., Hill S. J., Kendall D. A. Excitatory amino acid-induced formation of inositol phosphates in guinea-pig cerebral cortical slices: involvement of ionotropic or metabotropic receptors? J Neurochem. 1990 Oct;55(4):1439–1441. doi: 10.1111/j.1471-4159.1990.tb03158.x. [DOI] [PubMed] [Google Scholar]
 - Alexander S. P., Kendall D. A., Hill S. J. Differences in the adenosine receptors modulating inositol phosphates and cyclic AMP accumulation in mammalian cerebral cortex. Br J Pharmacol. 1989 Dec;98(4):1241–1248. doi: 10.1111/j.1476-5381.1989.tb12670.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Batchelor A. M., Garthwaite J. Novel synaptic potentials in cerebellar Purkinje cells: probable mediation by metabotropic glutamate receptors. Neuropharmacology. 1993 Jan;32(1):11–20. doi: 10.1016/0028-3908(93)90124-l. [DOI] [PubMed] [Google Scholar]
 - Cartmell J., Curtis A. R., Kemp J. A., Kendall D. A., Alexander S. P. Subtypes of metabotropic excitatory amino acid receptor distinguished by stereoisomers of the rigid glutamate analogue, 1-aminocyclopentane-1,3-dicarboxylate. Neurosci Lett. 1993 Apr 16;153(1):107–110. doi: 10.1016/0304-3940(93)90088-3. [DOI] [PubMed] [Google Scholar]
 - Cartmell J., Kemp J. A., Alexander S. P., Hill S. J., Kendall D. A. Inhibition of forskolin-stimulated cyclic AMP formation by 1-aminocyclopentane-trans-1,3-dicarboxylate in guinea-pig cerebral cortical slices. J Neurochem. 1992 May;58(5):1964–1966. doi: 10.1111/j.1471-4159.1992.tb10077.x. [DOI] [PubMed] [Google Scholar]
 - Cartmell J., Kemp J. A., Alexander S. P., Shinozaki H., Kendall D. A. Modulation of cyclic AMP formation by putative metabotropic receptor agonists. Br J Pharmacol. 1994 Jan;111(1):364–369. doi: 10.1111/j.1476-5381.1994.tb14069.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Fotuhi M., Sharp A. H., Glatt C. E., Hwang P. M., von Krosigk M., Snyder S. H., Dawson T. M. Differential localization of phosphoinositide-linked metabotropic glutamate receptor (mGluR1) and the inositol 1,4,5-trisphosphate receptor in rat brain. J Neurosci. 1993 May;13(5):2001–2012. doi: 10.1523/JNEUROSCI.13-05-02001.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Garthwaite J. Cellular uptake disguises action of L-glutamate on N-methyl-D-aspartate receptors. With an appendix: diffusion of transported amino acids into brain slices. Br J Pharmacol. 1985 May;85(1):297–307. doi: 10.1111/j.1476-5381.1985.tb08860.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Genazzani A. A., Casabona G., L'Episcopo M. R., Condorelli D. F., Dell'Albani P., Shinozaki H., Nicoletti F. Characterization of metabotropic glutamate receptors negatively linked to adenylyl cyclase in brain slices. Brain Res. 1993 Sep 17;622(1-2):132–138. doi: 10.1016/0006-8993(93)90811-z. [DOI] [PubMed] [Google Scholar]
 - Görcs T. J., Penke B., Böti Z., Katarova Z., Hámori J. Immunohistochemical visualization of a metabotropic glutamate receptor. Neuroreport. 1993 Mar;4(3):283–286. doi: 10.1097/00001756-199303000-00014. [DOI] [PubMed] [Google Scholar]
 - Hayashi Y., Momiyama A., Takahashi T., Ohishi H., Ogawa-Meguro R., Shigemoto R., Mizuno N., Nakanishi S. Role of a metabotropic glutamate receptor in synaptic modulation in the accessory olfactory bulb. Nature. 1993 Dec 16;366(6456):687–690. doi: 10.1038/366687a0. [DOI] [PubMed] [Google Scholar]
 - Hernández F., Kendall D. A., Alexander S. P. Adenosine receptor-induced second messenger production in adult guinea-pig cerebellum. Br J Pharmacol. 1993 Nov;110(3):1085–1090. doi: 10.1111/j.1476-5381.1993.tb13925.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Ito I., Kohda A., Tanabe S., Hirose E., Hayashi M., Mitsunaga S., Sugiyama H. 3,5-Dihydroxyphenyl-glycine: a potent agonist of metabotropic glutamate receptors. Neuroreport. 1992 Nov;3(11):1013–1016. [PubMed] [Google Scholar]
 - Kristensen P., Suzdak P. D., Thomsen C. Expression pattern and pharmacology of the rat type IV metabotropic glutamate receptor. Neurosci Lett. 1993 Jun 11;155(2):159–162. doi: 10.1016/0304-3940(93)90697-j. [DOI] [PubMed] [Google Scholar]
 - Minakami R., Katsuki F., Sugiyama H. A variant of metabotropic glutamate receptor subtype 5: an evolutionally conserved insertion with no termination codon. Biochem Biophys Res Commun. 1993 Jul 30;194(2):622–627. doi: 10.1006/bbrc.1993.1866. [DOI] [PubMed] [Google Scholar]
 - Nakajima Y., Iwakabe H., Akazawa C., Nawa H., Shigemoto R., Mizuno N., Nakanishi S. Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J Biol Chem. 1993 Jun 5;268(16):11868–11873. [PubMed] [Google Scholar]
 - Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science. 1992 Oct 23;258(5082):597–603. doi: 10.1126/science.1329206. [DOI] [PubMed] [Google Scholar]
 - Okamoto N., Hori S., Akazawa C., Hayashi Y., Shigemoto R., Mizuno N., Nakanishi S. Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction. J Biol Chem. 1994 Jan 14;269(2):1231–1236. [PubMed] [Google Scholar]
 - Pin J. P., Duvoisin R. The metabotropic glutamate receptors: structure and functions. Neuropharmacology. 1995 Jan;34(1):1–26. doi: 10.1016/0028-3908(94)00129-g. [DOI] [PubMed] [Google Scholar]
 - Pin J. P., Waeber C., Prezeau L., Bockaert J., Heinemann S. F. Alternative splicing generates metabotropic glutamate receptors inducing different patterns of calcium release in Xenopus oocytes. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10331–10335. doi: 10.1073/pnas.89.21.10331. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Prezeau L., Manzoni O., Homburger V., Sladeczek F., Curry K., Bockaert J. Characterization of a metabotropic glutamate receptor: direct negative coupling to adenylyl cyclase and involvement of a pertussis toxin-sensitive G protein. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8040–8044. doi: 10.1073/pnas.89.17.8040. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
 - Schoepp D. D., Goldsworthy J., Johnson B. G., Salhoff C. R., Baker S. R. 3,5-dihydroxyphenylglycine is a highly selective agonist for phosphoinositide-linked metabotropic glutamate receptors in the rat hippocampus. J Neurochem. 1994 Aug;63(2):769–772. doi: 10.1046/j.1471-4159.1994.63020769.x. [DOI] [PubMed] [Google Scholar]
 - Tanabe Y., Masu M., Ishii T., Shigemoto R., Nakanishi S. A family of metabotropic glutamate receptors. Neuron. 1992 Jan;8(1):169–179. doi: 10.1016/0896-6273(92)90118-w. [DOI] [PubMed] [Google Scholar]
 - Tanabe Y., Nomura A., Masu M., Shigemoto R., Mizuno N., Nakanishi S. Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J Neurosci. 1993 Apr;13(4):1372–1378. doi: 10.1523/JNEUROSCI.13-04-01372.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Thomsen C., Boel E., Suzdak P. D. Actions of phenylglycine analogs at subtypes of the metabotropic glutamate receptor family. Eur J Pharmacol. 1994 Mar 15;267(1):77–84. doi: 10.1016/0922-4106(94)90227-5. [DOI] [PubMed] [Google Scholar]
 
