Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Jun;118(3):477–484. doi: 10.1111/j.1476-5381.1996.tb15428.x

VIP-induced relaxation of guinea-pig intestinal smooth muscle cells: sequential involvement of cyclic AMP and nitric oxide.

M Rekik 1, M Delvaux 1, I Tack 1, J Frexinos 1, L Bueno 1
PMCID: PMC1909695  PMID: 8762068

Abstract

1. A possible interaction between cyclic AMP and nitric oxide (NO) in mediating the relaxant effect of vasoactive intestinal polypeptide (VIP) on intestinal smooth muscle cells has been investigated. The effects of the inhibitor of NO synthesis, NG-nitro-L-arginine methyl ester (L-NAME), have been studied on VIP-, forskolin-, and 8 bromo-cyclic AMP- induced relaxation of cells, dispersed by enzymatic digestion of muscle strips from the circular layer of guinea-pig ileum. 2. VIP alone did not modify the length of isolated muscle cells. By contrast, when the cells were contracted by cholecystokinin octapeptide, CCK8 (10 nM), VIP inhibited this contraction, inducing a concentration-dependent relaxation of the cells. Maximal relaxation was induced by 1 microM VIP (EC50 = 408.2 +/- 16.7 pM). 3. N-ethylmaleimide, inhibitors of adenylate cyclase or somatostatin, abolished the relaxing effect of VIP. (R)-p-cAMPs, an antagonist of cyclic AMP on protein kinase A also inhibited the VIP-induced relaxation by 92.1 +/- 6.3%. Inhibitors of nitric oxide synthase (NOS), L-NAME and L-NMMA, partially inhibited VIP-induced relaxation. The effect of L-NAME was reversed by L-arginine but not by D-arginine. 4. (R)-p-cAMPS and L-NAME also inhibited the cell relaxation induced either by forskolin which directly stimulates adenylate cyclase activity or 8-bromo-cyclic AMP, an analogue of cyclic AMP. 5. When cells were incubated for 30 min with dexamethasone 10 microM, a glucocorticoid known to decrease the synthesis of iNOS, the relaxing effect of a maximal concentration of VIP was decreased by 52 +/- 4% and L-NMMA had no further effect on this residual VIP-induced relaxation. Milrinone, a phosphodiesterase type III inhibitor, potentiated the relaxant effect of VIP. 6. These data demonstrate that the intracellular pathway mediating the relaxant effect of VIP in intestinal smooth muscle cells includes the sequential activation of adenylate cyclase, protein kinase A, activation of NOS and finally production of NO and cyclic GMP. NO could in turn regulate the cyclic AMP-dependent pathway of cell relaxation.

Full text

PDF
478

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allescher H. D., Lu S., Daniel E. E., Classen M. Nitric oxide as putative nonadrenergic noncholinergic inhibitory transmitter in the opossum sphincter of Oddi. Can J Physiol Pharmacol. 1993 Jul;71(7):525–530. doi: 10.1139/y93-077. [DOI] [PubMed] [Google Scholar]
  2. Ashkenazi A., Peralta E. G., Winslow J. W., Ramachandran J., Capon D. J. Functionally distinct G proteins selectively couple different receptors to PI hydrolysis in the same cell. Cell. 1989 Feb 10;56(3):487–493. doi: 10.1016/0092-8674(89)90251-1. [DOI] [PubMed] [Google Scholar]
  3. Beavo J. A., Reifsnyder D. H. Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci. 1990 Apr;11(4):150–155. doi: 10.1016/0165-6147(90)90066-H. [DOI] [PubMed] [Google Scholar]
  4. Berdeaux A. Nitric oxide: an ubiquitous messenger. Fundam Clin Pharmacol. 1993;7(8):401–411. doi: 10.1111/j.1472-8206.1993.tb01037.x. [DOI] [PubMed] [Google Scholar]
  5. Bitar K. N., Makhlouf G. M. Receptors on smooth muscle cells: characterization by contraction and specific antagonists. Am J Physiol. 1982 Apr;242(4):G400–G407. doi: 10.1152/ajpgi.1982.242.4.G400. [DOI] [PubMed] [Google Scholar]
  6. Bitar K. N., Makhlouf G. M. Relaxation of isolated gastric smooth muscle cells by vasoactive intestinal peptide. Science. 1982 Apr 30;216(4545):531–533. doi: 10.1126/science.6176025. [DOI] [PubMed] [Google Scholar]
  7. Bolton T. B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev. 1979 Jul;59(3):606–718. doi: 10.1152/physrev.1979.59.3.606. [DOI] [PubMed] [Google Scholar]
  8. Botella A., Delvaux M., Frexinos J., Bueno L. Comparative effects of galanin on isolated smooth muscle cells from ileum in five mammalian species. Life Sci. 1992;50(17):1253–1261. doi: 10.1016/0024-3205(92)90325-j. [DOI] [PubMed] [Google Scholar]
  9. Botella A., Rekik M., Delvaux M., Davicco M. J., Barlet J. P., Frexinos J., Bueno L. Parathyroid hormone (PTH) and PTH-related peptide induce relaxation of smooth muscle cells from guinea pig ileum: interaction with vasoactive intestinal peptide receptors. Endocrinology. 1994 Nov;135(5):2160–2167. doi: 10.1210/endo.135.5.7525262. [DOI] [PubMed] [Google Scholar]
  10. Bredt D. S., Ferris C. D., Snyder S. H. Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. J Biol Chem. 1992 Jun 5;267(16):10976–10981. [PubMed] [Google Scholar]
  11. Bredt D. S., Hwang P. M., Glatt C. E., Lowenstein C., Reed R. R., Snyder S. H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991 Jun 27;351(6329):714–718. doi: 10.1038/351714a0. [DOI] [PubMed] [Google Scholar]
  12. Bredt D. S., Snyder S. H. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci U S A. 1989 Nov;86(22):9030–9033. doi: 10.1073/pnas.86.22.9030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bult H., Boeckxstaens G. E., Pelckmans P. A., Jordaens F. H., Van Maercke Y. M., Herman A. G. Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature. 1990 May 24;345(6273):346–347. doi: 10.1038/345346a0. [DOI] [PubMed] [Google Scholar]
  14. Di Rosa M., Radomski M., Carnuccio R., Moncada S. Glucocorticoids inhibit the induction of nitric oxide synthase in macrophages. Biochem Biophys Res Commun. 1990 Nov 15;172(3):1246–1252. doi: 10.1016/0006-291x(90)91583-e. [DOI] [PubMed] [Google Scholar]
  15. Eckly A. E., Lugnier C. Role of phosphodiesterases III and IV in the modulation of vascular cyclic AMP content by the NO/cyclic GMP pathway. Br J Pharmacol. 1994 Oct;113(2):445–450. doi: 10.1111/j.1476-5381.1994.tb17009.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  17. Furness J. B., Pompolo S., Shuttleworth C. W., Burleigh D. E. Light- and electron-microscopic immunochemical analysis of nerve fibre types innervating the taenia of the guinea-pig caecum. Cell Tissue Res. 1992 Oct;270(1):125–137. doi: 10.1007/BF00381887. [DOI] [PubMed] [Google Scholar]
  18. Förstermann U., Schmidt H. H., Pollock J. S., Sheng H., Mitchell J. A., Warner T. D., Nakane M., Murad F. Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem Pharmacol. 1991 Oct 24;42(10):1849–1857. doi: 10.1016/0006-2952(91)90581-o. [DOI] [PubMed] [Google Scholar]
  19. Goyal R. K., Rattan S., Said S. I. VIP as a possible neurotransmitter of non-cholinergic non-adrenergic inhibitory neurones. Nature. 1980 Nov 27;288(5789):378–380. doi: 10.1038/288378a0. [DOI] [PubMed] [Google Scholar]
  20. Grider J. R., Murthy K. S., Jin J. G., Makhlouf G. M. Stimulation of nitric oxide from muscle cells by VIP: prejunctional enhancement of VIP release. Am J Physiol. 1992 Apr;262(4 Pt 1):G774–G778. doi: 10.1152/ajpgi.1992.262.4.G774. [DOI] [PubMed] [Google Scholar]
  21. Gruetter C. A., Gruetter D. Y., Lyon J. E., Kadowitz P. J., Ignarro L. J. Relationship between cyclic guanosine 3':5'-monophosphate formation and relaxation of coronary arterial smooth muscle by glyceryl trinitrate, nitroprusside, nitrite and nitric oxide: effects of methylene blue and methemoglobin. J Pharmacol Exp Ther. 1981 Oct;219(1):181–186. [PubMed] [Google Scholar]
  22. Gu Z. F., Jensen R. T., Maton P. N. A primary role for protein kinase A in smooth muscle relaxation induced by adrenergic agonists and neuropeptides. Am J Physiol. 1992 Sep;263(3 Pt 1):G360–G364. doi: 10.1152/ajpgi.1992.263.3.G360. [DOI] [PubMed] [Google Scholar]
  23. Gu Z. F., Pradhan T., Coy D. H., Mantey S., Bunnett N. W., Jensen R. T., Maton P. N. Actions of somatostatins on gastric smooth muscle cells. Am J Physiol. 1992 Mar;262(3 Pt 1):G432–G438. doi: 10.1152/ajpgi.1992.262.3.G432. [DOI] [PubMed] [Google Scholar]
  24. Gustafsson B. I., Delbro D. S. Tonic inhibition of small intestinal motility by nitric oxide. J Auton Nerv Syst. 1993 Aug-Sep;44(2-3):179–187. doi: 10.1016/0165-1838(93)90030-x. [DOI] [PubMed] [Google Scholar]
  25. Imai T., Hirata Y., Kanno K., Marumo F. Induction of nitric oxide synthase by cyclic AMP in rat vascular smooth muscle cells. J Clin Invest. 1994 Feb;93(2):543–549. doi: 10.1172/JCI117005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jin J. G., Murthy K. S., Grider J. R., Makhlouf G. M. Activation of distinct cAMP- and cGMP-dependent pathways by relaxant agents in isolated gastric muscle cells. Am J Physiol. 1993 Mar;264(3 Pt 1):G470–G477. doi: 10.1152/ajpgi.1993.264.3.G470. [DOI] [PubMed] [Google Scholar]
  27. Komas N., Lugnier C., Stoclet J. C. Endothelium-dependent and independent relaxation of the rat aorta by cyclic nucleotide phosphodiesterase inhibitors. Br J Pharmacol. 1991 Oct;104(2):495–503. doi: 10.1111/j.1476-5381.1991.tb12457.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Komori Y., Wallace G. C., Fukuto J. M. Inhibition of purified nitric oxide synthase from rat cerebellum and macrophage by L-arginine analogs. Arch Biochem Biophys. 1994 Dec;315(2):213–218. doi: 10.1006/abbi.1994.1492. [DOI] [PubMed] [Google Scholar]
  29. Lamas S., Marsden P. A., Li G. K., Tempst P., Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6348–6352. doi: 10.1073/pnas.89.14.6348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Larsson L. I., Fahrenkrug J., Schaffalitzky De Muckadell O., Sundler F., Håkanson R., Rehfeld J. R. Localization of vasoactive intestinal polypeptide (VIP) to central and peripheral neurons. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3197–3200. doi: 10.1073/pnas.73.9.3197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Laurenza A., Sutkowski E. M., Seamon K. B. Forskolin: a specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action? Trends Pharmacol Sci. 1989 Nov;10(11):442–447. doi: 10.1016/S0165-6147(89)80008-2. [DOI] [PubMed] [Google Scholar]
  32. Maggi C. A., Zagorodnyuk V., Giuliani S. Tachykinin NK3 receptor mediates NANC hyperpolarization and relaxation via nitric oxide release in the circular muscle of the guinea-pig colon. Regul Pept. 1994 Oct 21;53(3):259–274. doi: 10.1016/0167-0115(94)90174-0. [DOI] [PubMed] [Google Scholar]
  33. Moncada S. The 1991 Ulf von Euler Lecture. The L-arginine: nitric oxide pathway. Acta Physiol Scand. 1992 Jul;145(3):201–227. doi: 10.1111/j.1748-1716.1992.tb09359.x. [DOI] [PubMed] [Google Scholar]
  34. Moummi C., Rattan S. Effect of methylene blue and N-ethylmaleimide on internal anal sphincter relaxation. Am J Physiol. 1988 Nov;255(5 Pt 1):G571–G578. doi: 10.1152/ajpgi.1988.255.5.G571. [DOI] [PubMed] [Google Scholar]
  35. Murad F., Mittal C. K., Arnold W. P., Katsuki S., Kimura H. Guanylate cyclase: activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv Cyclic Nucleotide Res. 1978;9:145–158. [PubMed] [Google Scholar]
  36. Murthy K. S., Makhlouf G. M. Vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide-dependent activation of membrane-bound NO synthase in smooth muscle mediated by pertussis toxin-sensitive Gi1-2. J Biol Chem. 1994 Jun 10;269(23):15977–15980. [PubMed] [Google Scholar]
  37. Radomski M. W., Palmer R. M., Moncada S. Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci U S A. 1990 Dec;87(24):10043–10047. doi: 10.1073/pnas.87.24.10043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rothermel J. D., Perillo N. L., Marks J. S., Botelho L. H. Effects of the specific cAMP antagonist, (Rp)-adenosine cyclic 3',5'-phosphorothioate, on the cAMP-dependent protein kinase-induced activity of hepatic glycogen phosphorylase and glycogen synthase. J Biol Chem. 1984 Dec 25;259(24):15294–15300. [PubMed] [Google Scholar]
  39. Smith J. R., Simon E. J. Selective protection of stereospecific enkephalin and opiate binding against inactivation by N-ethylmaleimide: evidence for two classes of opiate receptors. Proc Natl Acad Sci U S A. 1980 Jan;77(1):281–284. doi: 10.1073/pnas.77.1.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wolin M. S., Wood K. S., Ignarro L. J. Guanylate cyclase from bovine lung. A kinetic analysis of the regulation of the purified soluble enzyme by protoporphyrin IX, heme, and nitrosyl-heme. J Biol Chem. 1982 Nov 25;257(22):13312–13320. [PubMed] [Google Scholar]
  41. Xie Q. W., Cho H. J., Calaycay J., Mumford R. A., Swiderek K. M., Lee T. D., Ding A., Troso T., Nathan C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science. 1992 Apr 10;256(5054):225–228. doi: 10.1126/science.1373522. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES