Abstract
1. The aims of the present study were (i) to characterize further the pharmacology of 5-HT1D autoreceptors modulating 5-HT release in guinea-pig mesencephalic raphe, hippocampus and frontal cortex; (ii) to determine whether 5-HT1D receptors in the mesencephalic raphe are located on 5-HT neurones; (iii) to determine whether 5-HT1D autoreceptors are coupled to G proteins; and (iv) to assess their sensitivity following long-term 5-HT reuptake blockade and inhibition of type-A monoamine oxidase. 2. In mesencephalic raphe, hippocampus and frontal cortex slices, the 5-HT1D/1B receptor agonist, sumatriptan and the 5-HT1 receptor agonist, 5-methoxytryptamine (5-MeOT) but not the 5-HT1B receptor agonist, CP93129, inhibited electrically the evoked release of [3H]-5-HT in a concentration-dependent manner. This effect was antagonized by the 5-HT1D/1B receptor antagonist GR127935 in the three structures, but not by the 5-HT1A receptor antagonist, (+)-WAY100635 in mesencephalic raphe slices. These results confirm the presence of functional 5-HT1D autoreceptors controlling 5-HT release within the mesencephalic raphe as well as in terminal regions. 3. The inhibitory effect of sumatriptan on K(+)-evoked release of [3H]-5-HT was not reduced by the addition of the Na+ channel blocker, tetrodotoxin to the superfusion medium, suggesting that these 5-HT1D receptors in the mesencephalic raphe are located on 5-HT neurones and may be considered autoreceptors. 4. The in vitro treatment with the alkylating agent N-ethylmaleimide (NEM) was used to determine whether these 5-HT1D autoreceptors are coupled to G proteins. The inhibitory effect of sumatriptan on electrically evoked release of [3H]-5-HT was attenuated in NEM-pretreated slices from mesencephalic raphe, hippocampus and frontal cortex, indicating that the 5-HT1D autoreceptors activated by sumatriptan are coupled to G proteins in these three structures. Taken together with our previous results, this suggests that, in addition to the 5-HT1D autoreceptor activated by sumatriptan, another subtype of 5-HT autoreceptor is activated by 5-MeOT in the hippocampus. 5. Following a 3-week treatment with the selective 5-HT reuptake inhibitor, paroxetine (10 mg kg-1 day-1) and a 48 h washout period, the electrically evoked release of [3H]-5-HT was enhanced in mesencephalic raphe, hippocampus and frontal cortex slices. There was an attenuation of the capacity of sumatriptan to inhibit the evoked release of [3H]-5-HT from mesencephalic raphe slices but not from frontal cortex and hippocampus slices. Only in the latter structure was the suppressant effect of 5-MeOT attenuated. After a 3-week treatment with the reversible type-A monoamine oxidase inhibitor, befloxatone (0.75 mg kg-1 day-1) and 48 h washout period, the effectiveness of sumatriptan and 5-MeOT on the evoked release of [3H]-5-HT was unaltered in the same brain structures. 6. The enhancement of [3H]-5-HT release by long-term paroxetine treatment is possibly due to a desensitization of 5-HT1D autoreceptors activated by sumatriptan in mesencephalic raphe and by terminal 5-HT autoreceptors activated by 5-MeOT in hippocampus. In the case of the frontal cortex, it appears that 5-MeOT and sumatriptan may act on the same 5-HT1D autoreceptor which is not desensitized either after paroxetine or befloxatone treatment, as previously reported.
Full text
PDF![681](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa93/1909722/50beb433bdd6/brjpharm00082-0246.png)
![682](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa93/1909722/5134ced2feb0/brjpharm00082-0247.png)
![683](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa93/1909722/8a3df4efdfad/brjpharm00082-0248.png)
![684](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa93/1909722/8c4bb98231f6/brjpharm00082-0249.png)
![685](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa93/1909722/9dc6c8a38d28/brjpharm00082-0250.png)
![686](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa93/1909722/cf9bf23f36a6/brjpharm00082-0251.png)
![687](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa93/1909722/2a1818e7c727/brjpharm00082-0252.png)
![688](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa93/1909722/613c5ff5c269/brjpharm00082-0253.png)
![689](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa93/1909722/ce94d525324c/brjpharm00082-0254.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adell A., Artigas F. Differential effects of clomipramine given locally or systemically on extracellular 5-hydroxytryptamine in raphe nuclei and frontal cortex. An in vivo brain microdialysis study. Naunyn Schmiedebergs Arch Pharmacol. 1991 Mar;343(3):237–244. doi: 10.1007/BF00251121. [DOI] [PubMed] [Google Scholar]
- Baumann P. A., Waldmeier P. C. Further evidence for negative feedback control of serotonin release in the central nervous system. Naunyn Schmiedebergs Arch Pharmacol. 1981 Aug;317(1):36–43. doi: 10.1007/BF00506254. [DOI] [PubMed] [Google Scholar]
- Blier P., Bouchard C. Functional characterization of a 5-HT3 receptor which modulates the release of 5-HT in the guinea-pig brain. Br J Pharmacol. 1993 Jan;108(1):13–22. doi: 10.1111/j.1476-5381.1993.tb13433.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blier P., Bouchard C. Modulation of 5-HT release in the guinea-pig brain following long-term administration of antidepressant drugs. Br J Pharmacol. 1994 Oct;113(2):485–495. doi: 10.1111/j.1476-5381.1994.tb17015.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blier P., Monroe P. J., Bouchard C., Smith D. L., Smith D. J. 5-HT3 receptors which modulate [3H]5-HT release in the guinea pig hypothalamus are not autoreceptors. Synapse. 1993 Oct;15(2):143–148. doi: 10.1002/syn.890150206. [DOI] [PubMed] [Google Scholar]
- Blier P. Terminal serotonin autoreceptor function in the rat hippocampus is not modified by pertussis and cholera toxins. Naunyn Schmiedebergs Arch Pharmacol. 1991 Aug;344(2):160–166. doi: 10.1007/BF00167213. [DOI] [PubMed] [Google Scholar]
- Bruinvels A. T., Landwehrmeyer B., Gustafson E. L., Durkin M. M., Mengod G., Branchek T. A., Hoyer D., Palacios J. M. Localization of 5-HT1B, 5-HT1D alpha, 5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain. Neuropharmacology. 1994 Mar-Apr;33(3-4):367–386. doi: 10.1016/0028-3908(94)90067-1. [DOI] [PubMed] [Google Scholar]
- Davidson C., Stamford J. A. Evidence that 5-hydroxytryptamine release in rat dorsal raphé nucleus is controlled by 5-HT1A, 5-HT1B and 5-HT1D autoreceptors. Br J Pharmacol. 1995 Mar;114(6):1107–1109. doi: 10.1111/j.1476-5381.1995.tb13321.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fletcher A., Bill D. J., Bill S. J., Cliffe I. A., Dover G. M., Forster E. A., Haskins J. T., Jones D., Mansell H. L., Reilly Y. WAY100135: a novel, selective antagonist at presynaptic and postsynaptic 5-HT1A receptors. Eur J Pharmacol. 1993 Jun 24;237(2-3):283–291. doi: 10.1016/0014-2999(93)90280-u. [DOI] [PubMed] [Google Scholar]
- Galzin A. M., Moret C., Verzier B., Langer S. Z. Interaction between tricyclic and nontricyclic 5-hydroxytryptamine uptake inhibitors and the presynaptic 5-hydroxytryptamine inhibitory autoreceptors in the rat hypothalamus. J Pharmacol Exp Ther. 1985 Oct;235(1):200–211. [PubMed] [Google Scholar]
- Galzin A. M., Poirier M. F., Lista A., Chodkiewicz J. P., Blier P., Ramdine R., Loô H., Roux F. X., Redondo A., Langer S. Z. Characterization of the 5-hydroxytryptamine receptor modulating the release of 5-[3H]hydroxytryptamine in slices of the human neocortex. J Neurochem. 1992 Oct;59(4):1293–1301. doi: 10.1111/j.1471-4159.1992.tb08440.x. [DOI] [PubMed] [Google Scholar]
- Hamblin M. W., Metcalf M. A. Primary structure and functional characterization of a human 5-HT1D-type serotonin receptor. Mol Pharmacol. 1991 Aug;40(2):143–148. [PubMed] [Google Scholar]
- Herrick-Davis K., Titeler M., Leonhardt S., Struble R., Price D. Serotonin 5-HT1D receptors in human prefrontal cortex and caudate: interaction with a GTP binding protein. J Neurochem. 1988 Dec;51(6):1906–1912. doi: 10.1111/j.1471-4159.1988.tb01176.x. [DOI] [PubMed] [Google Scholar]
- Hoyer D., Middlemiss D. N. Species differences in the pharmacology of terminal 5-HT autoreceptors in mammalian brain. Trends Pharmacol Sci. 1989 Apr;10(4):130–132. doi: 10.1016/0165-6147(89)90159-4. [DOI] [PubMed] [Google Scholar]
- Hutson P. H., Bristow L. J., Cunningham J. R., Hogg J. E., Longmore J., Murray F., Pearce D., Razzaque Z., Saywell K., Tricklebank M. D. The effects of GR127935, a putative 5-HT1D receptor antagonist, on brain 5-HT metabolism, extracellular 5-HT concentration and behaviour in the guinea pig. Neuropharmacology. 1995 Apr;34(4):383–392. doi: 10.1016/0028-3908(95)00016-y. [DOI] [PubMed] [Google Scholar]
- Innis R. B., Aghajanian G. K. Pertussis toxin blocks autoreceptor-mediated inhibition of dopaminergic neurons in rat substantia nigra. Brain Res. 1987 May 12;411(1):139–143. doi: 10.1016/0006-8993(87)90690-1. [DOI] [PubMed] [Google Scholar]
- Innis R. B., Nestler E. J., Aghajanian G. K. Evidence for G protein mediation of serotonin- and GABAB-induced hyperpolarization of rat dorsal raphe neurons. Brain Res. 1988 Aug 30;459(1):27–36. doi: 10.1016/0006-8993(88)90282-x. [DOI] [PubMed] [Google Scholar]
- Jacobs B. L. Single unit activity of brain monoamine-containing neurons in freely moving animals. Ann N Y Acad Sci. 1986;473:70–77. doi: 10.1111/j.1749-6632.1986.tb23604.x. [DOI] [PubMed] [Google Scholar]
- Limberger N., Deicher R., Starke K. Species differences in presynaptic serotonin autoreceptors: mainly 5-HT1B but possibly in addition 5-HT1D in the rat, 5-HT1D in the rabbit and guinea-pig brain cortex. Naunyn Schmiedebergs Arch Pharmacol. 1991 Apr;343(4):353–364. doi: 10.1007/BF00179039. [DOI] [PubMed] [Google Scholar]
- Maura G., Thellung S., Andrioli G. C., Ruelle A., Raiteri M. Release-regulating serotonin 5-HT1D autoreceptors in human cerebral cortex. J Neurochem. 1993 Mar;60(3):1179–1182. doi: 10.1111/j.1471-4159.1993.tb03274.x. [DOI] [PubMed] [Google Scholar]
- Middlemiss D. N. The putative 5-HT1 receptor agonist, RU 24969, inhibits the efflux of 5-hydroxytryptamine from rat frontal cortex slices by stimulation of the 5-HT autoreceptor. J Pharm Pharmacol. 1985 Jun;37(6):434–437. doi: 10.1111/j.2042-7158.1985.tb03032.x. [DOI] [PubMed] [Google Scholar]
- Mongeau R., de Montigny C., Blier P. Electrophysiologic evidence for desensitization of alpha 2-adrenoceptors on serotonin terminals following long-term treatment with drugs increasing norepinephrine synaptic concentration. Neuropsychopharmacology. 1994 Feb;10(1):41–51. doi: 10.1038/npp.1994.6. [DOI] [PubMed] [Google Scholar]
- Mundey M. K., Fletcher A., Marsden C. A. Effect of the putative 5-HT1A antagonists WAY100135 and SDZ 216-525 on 5-HT neuronal firing in the guinea-pig dorsal raphe nucleus. Neuropharmacology. 1994 Jan;33(1):61–66. doi: 10.1016/0028-3908(94)90097-3. [DOI] [PubMed] [Google Scholar]
- Piñeyro G., Blier P. Regulation of 5-hydroxytryptamine release from rat midbrain raphe nuclei by 5-hydroxytryptamine1D receptors: effect of tetrodotoxin, G protein inactivation and long-term antidepressant administration. J Pharmacol Exp Ther. 1996 Feb;276(2):697–707. [PubMed] [Google Scholar]
- Piñeyro G., de Montigny C., Blier P. 5-HT1D receptors regulate 5-HT release in the rat raphe nuclei. In vivo voltammetry and in vitro superfusion studies. Neuropsychopharmacology. 1995 Nov;13(3):249–260. doi: 10.1016/0893-133X(95)00109-Q. [DOI] [PubMed] [Google Scholar]
- Schoeffter P., Waeber C., Palacios J. M., Hoyer D. The 5-hydroxytryptamine 5-HT1D receptor subtype is negatively coupled to adenylate cyclase in calf substantia nigra. Naunyn Schmiedebergs Arch Pharmacol. 1988 Jun;337(6):602–608. doi: 10.1007/BF00175784. [DOI] [PubMed] [Google Scholar]
- Skingle M., Sleight A. J., Feniuk W. Effects of the 5-HT1D receptor antagonist GR127935 on extracellular levels of 5-HT in the guinea-pig frontal cortex as measured by microdialysis. Neuropharmacology. 1995 Apr;34(4):377–382. doi: 10.1016/0028-3908(94)00167-q. [DOI] [PubMed] [Google Scholar]
- Starke K., Göthert M., Kilbinger H. Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev. 1989 Jul;69(3):864–989. doi: 10.1152/physrev.1989.69.3.864. [DOI] [PubMed] [Google Scholar]
- Starkey S. J., Skingle M. 5-HT1D as well as 5-HT1A autoreceptors modulate 5-HT release in the guinea-pig dorsal raphé nucleus. Neuropharmacology. 1994 Mar-Apr;33(3-4):393–402. doi: 10.1016/0028-3908(94)90069-8. [DOI] [PubMed] [Google Scholar]
- Waeber C., Schoeffter P., Palacios J. M., Hoyer D. 5-HT1D receptors in guinea-pig and pigeon brain. Radioligand binding and biochemical studies. Naunyn Schmiedebergs Arch Pharmacol. 1989 Nov;340(5):479–485. doi: 10.1007/BF00260601. [DOI] [PubMed] [Google Scholar]
- Weinshank R. L., Zgombick J. M., Macchi M. J., Branchek T. A., Hartig P. R. Human serotonin 1D receptor is encoded by a subfamily of two distinct genes: 5-HT1D alpha and 5-HT1D beta. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3630–3634. doi: 10.1073/pnas.89.8.3630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkinson L. O., Hawkins L. M., Beer M. S., Hibert M. F., Middlemiss D. N. Stereoselective actions of the isomers of metitepine at 5-HT1D receptors in the guinea pig brain. Neuropharmacology. 1993 Mar;32(3):205–208. doi: 10.1016/0028-3908(93)90101-8. [DOI] [PubMed] [Google Scholar]
- Wilkinson L. O., Middlemiss D. N. Metitepine distinguishes two receptors mediating inhibition of [3H]-5-hydroxytryptamine release in guinea pig hippocampus. Naunyn Schmiedebergs Arch Pharmacol. 1992 Jun;345(6):696–699. doi: 10.1007/BF00164585. [DOI] [PubMed] [Google Scholar]
- Zgombick J. M., Borden L. A., Cochran T. L., Kucharewicz S. A., Weinshank R. L., Branchek T. A. Dual coupling of cloned human 5-hydroxytryptamine1D alpha and 5-hydroxytryptamine1D beta receptors stably expressed in murine fibroblasts: inhibition of adenylate cyclase and elevation of intracellular calcium concentrations via pertussis toxin-sensitive G protein(s). Mol Pharmacol. 1993 Sep;44(3):575–582. [PubMed] [Google Scholar]
- el Mansari M., Bouchard C., Blier P. Alteration of serotonin release in the guinea pig orbito-frontal cortex by selective serotonin reuptake inhibitors. Relevance to treatment of obsessive-compulsive disorder. Neuropsychopharmacology. 1995 Oct;13(2):117–127. doi: 10.1016/0893-133X(95)00045-F. [DOI] [PubMed] [Google Scholar]